Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501321 | PMC |
http://dx.doi.org/10.1038/leu.2017.99 | DOI Listing |
Clin Epigenetics
January 2025
School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
Fat mass obesity-associated protein (FTO) has been emerging as a potential therapeutic target for drug discovery in RNA epigenetics. In this work, a series of novel FTO inhibitors featuring an acylhydrazone scaffold were identified, and the optimized compounds - showed potent FTO inhibitory activities with IC values ranging from 7.1 to 9.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States.
DNPH1 is responsible for eliminating the epigenetically modified nucleotide, 5-hydroxymethyl-2'-deoxyuridine 5'-monophosphate (hmdUMP), preventing formation of hmdUTP, a mutation-inducing nucleotide. Loss of DNPH1 activity sensitizes PARP inhibition-resistant BRCA-deficient cancers by causing incorporation of hmdUTP into DNA. Hydrolysis of hmdUMP by DNPH1 proceeds through a covalent intermediate between Glu104 and 2-deoxyribose 5-phosphate, followed by hydrolysis, a reaction cycle with two transition states.
View Article and Find Full Text PDFLancet Diabetes Endocrinol
January 2025
Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK. Electronic address:
Diabetes is a leading cause of global mortality and disability, and its economic burden is substantial. This Review focuses on type 2 diabetes, which makes up 90-95% of all diabetes cases. Type 2 diabetes involves a progressive loss of insulin secretion often alongside insulin resistance and metabolic syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!