Background: Valve calcification is well estimated by ex-vivo micro-computed tomography (micro-CT). The objective of this study was to investigate the associations between micro-CT findings and biological indices of calcification in aortic stenosis (AS), as well as differences between bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV).Methods and Results:Aortic valves and plasma were obtained from patients undergoing valve surgery. Valves were dissected and underwent micro-CT, genetic analyses, and calcium content assessment. Plasma levels of calcification markers were measured. Forty-two patients with isolated severe AS, including 22 with BAV, were studied. BAV patients had a lower median CT value (140.0 [130.0-152.0] vs. 157.0 [147.0-176.0], P=0.002) and high-density calcification (HDC) fraction (9.3 [5.7-23.3] % vs. 21.3 [14.3-31.2] %, P=0.01), as compared with TAV. Calcification fraction (CF) correlated with AS severity (measured as maximal transvalvular pressure gradient [r=0.34, P=0.03], maximal flow velocity [r=0.38, P=0.02], and indexed aortic valve area [r=-0.37, P=0.02]). For TAV patients only, mRNA expression of integrin-binding sialoprotein correlated with CF (r=0.45, P=0.048), and the receptor activator of the nuclear factor κ-B ligand transcript correlated with HDC corrugation (r=0.54, P=0.01).
Conclusions: TAV patients with AS present more mineralized calcifications in micro-CT than BAV subjects. The relative volume of calcifications increases with the AS severity. In TAV patients, upregulated expression of genes involved in osteoblastogenesis in AS correlates with leaflet mineralization in micro-CT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1253/circj.CJ-16-1166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!