The isolation or in vitro derivation of many human cell types remains challenging and inefficient. Direct conversion of human pluripotent stem cells (hPSCs) by forced expression of transcription factors provides a potential alternative. However, deficient inducible gene expression in hPSCs has compromised efficiencies of forward programming approaches. We have systematically optimized inducible gene expression in hPSCs using a dual genomic safe harbor gene-targeting strategy. This approach provides a powerful platform for the generation of human cell types by forward programming. We report robust and deterministic reprogramming of hPSCs into neurons and functional skeletal myocytes. Finally, we present a forward programming strategy for rapid and highly efficient generation of human oligodendrocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390118 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2017.02.016 | DOI Listing |
J Natl Cancer Inst
January 2025
Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA.
Childhood cancers are a heterogeneous group of rare diseases, accounting for less than 2% of all cancers diagnosed worldwide. Most countries, therefore, do not have enough cases to provide robust information on epidemiology, treatment, and late effects, especially for rarer types of cancer. Thus, only through a concerted effort to share data internationally will we be able to answer research questions that could not otherwise be answered.
View Article and Find Full Text PDFPilot Feasibility Stud
January 2025
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
Acta Neuropathol Commun
January 2025
Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
Glioblastoma (GBM) is a highly aggressive adult brain cancer, characterised by poor prognosis and a dismal five-year survival rate. Despite significant knowledge gains in tumour biology, meaningful advances in patient survival remain elusive. The field of neuro-oncology faces many disease obstacles, one being the paucity of faithful models to advance preclinical research and guide personalised medicine approaches.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.
As the Internet of Things (IoT) expands globally, the challenge of signal transmission in remote regions without traditional communication infrastructure becomes prominent. An effective solution involves integrating aerial, terrestrial, and space components to form a Space-Air-Ground Integrated Network (SAGIN). This paper discusses an uplink signal scenario in which various types of data collection sensors as IoT devices use Unmanned Aerial Vehicles (UAVs) as relays to forward signals to low-Earth-orbit satellites.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Seamless Trans-X Lab (STL), School of Integrated Technology, Yonsei University, Incheon 21983, Republic of Korea.
In the domain of autonomous driving, trajectory prediction plays a pivotal role in ensuring the safety and reliability of autonomous systems, especially when navigating complex environments. Unfortunately, trajectory prediction suffers from uncertainty problems due to the randomness inherent in the driving environment, but uncertainty quantification in trajectory prediction is not widely addressed, and most studies rely on deep ensembles methods. This study presents a novel uncertainty-aware multimodal trajectory prediction (UAMTP) model that quantifies aleatoric and epistemic uncertainties through a single forward inference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!