AI Article Synopsis

Article Abstract

Protein modification by SUMO modulates essential biological processes in eukaryotes. SUMOylation is facilitated by sequential action of the E1-activating, E2-conjugating, and E3-ligase enzymes. In plants, SUMO regulates plant development and stress responses, which are key determinants in agricultural productivity. To generate additional tools for advancing our knowledge about the SUMO biology, we have developed a strategy for inhibiting in vivo SUMO conjugation based on disruption of SUMO E1-E2 interactions through expression of E1 SAE2 domain. Targeted mutagenesis and phylogenetic analyses revealed that this inhibition involves a short motif in SAE2 highly divergent across kingdoms. Transgenic plants expressing the SAE2 domain displayed dose-dependent inhibition of SUMO conjugation, and have revealed the existence of a post-transcriptional mechanism that regulates SUMO E2 conjugating enzyme levels. Interestingly, these transgenic plants displayed increased susceptibility to necrotrophic fungal infections by Botrytis cinerea and Plectosphaerella cucumerina. Early after fungal inoculation, host SUMO conjugation was post-transcriptionally downregulated, suggesting that targeting SUMOylation machinery could constitute a novel mechanism for fungal pathogenicity. These findings support the role of SUMOylation as a mechanism involved in plant protection from environmental stresses. In addition, the strategy for inhibiting SUMO conjugation in vivo described in this study might be applicable in important crop plants and other non-plant organisms regardless of their genetic complexity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2017.01.007DOI Listing

Publication Analysis

Top Keywords

sumo conjugation
16
sumo
10
disruption sumo
8
sumo e1-e2
8
susceptibility necrotrophic
8
necrotrophic fungal
8
strategy inhibiting
8
sae2 domain
8
transgenic plants
8
sumoylation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!