A panel of 22 phenols was investigated as inhibitors of the β-class carbonic anhydrase (CAs, EC 4.2.1.1) from the fungal parasite Malassezia globosa (MgCA), a validated anti-dandruff drug target. The displayed inhibitory activities were compared to the ones previously reported against the off-target widely distributed human (h) isoforms hCA I and II. All tested phenols possessed a better efficacy in inhibiting MgCA than the clinically used sulfonamide acetazolamide, with Ks in the range of 2.5 and 65.0μM. A homology-built model of MgCA was also used for understanding the binding mode of phenols to the fungal enzyme. Indeed, a wide network of hydrogen bonds and hydrophobic interactions between the phenol and active site residues were evidenced. The OH moiety of the inhibitor was observed anchored to the zinc-coordinated water, also making hydrogen bonds with Ser48 and Asp49. The diverse substituents at the phenolic scaffold were observed to interact with different portions of the hydrophobic pocket according to their nature and position. Considering the effective MgCA inhibitory properties of phenols, beside to the rather low inhibition against the off-target hCA I and II, this class of compounds might be of considerable interest in the cosmetics field as potential anti-dandruff drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2017.03.026 | DOI Listing |
Allergol Int
December 2024
Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Dermatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan. Electronic address:
Background: Type I allergy to sweat is involved in the pathogenesis of atopic dermatitis (AD) and cholinergic urticaria (CholU), with MGL_1304 from Malassezia globosa being the major causative antigen. Currently, no standard diagnostic test exists for sweat allergy that uses serum.
Methods: The ImmunoCAP (iCAP) system to measure antigen-specific IgE was developed using recombinant MGL_1304 (rMGL_1304).
Microbiol Spectr
January 2025
Department of Laboratory Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, China.
The connection between the gut mycobiome and atherosclerotic cardiovascular disease (ACVD) is largely uncharted. In our study, we compared the gut fungal communities of 214 ACVD patients with those of 171 healthy controls using shotgun metagenomic sequencing and examined their interactions with gut bacterial communities and network key taxa. The gut mycobiome composition in ACVD patients is significantly different, showing a rise in opportunistic pathogens like , , and , with and showing the most significant changes (Wilcoxon rank-sum test, < 0.
View Article and Find Full Text PDFArch Dermatol Res
December 2024
Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
BMC Res Notes
November 2024
Mekelle University, PO Box 231/1632, Mekelle, Ethiopia.
Objective: Dandruff, a condition caused by lipophilic Malassezia fungi, is an excessive shed of dead skin cells from the scalp. Effective preventive and curative measures of the condition depend on knowledge and understanding of the prevalence of the condition, the common etiologic species, and the associated factors. This study aimed to investigate the prevalence, common etiologic species, and associated factors of Malassezia infection in Mekelle City, Ethiopia.
View Article and Find Full Text PDFMycopathologia
September 2024
Department of Dermatology, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!