Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease.

Redox Biol

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China. Electronic address:

Published: August 2017

Changes in plasma concentration of small organic metabolites could be due to their altered production or urinary excretion and changes in their urine concentration may be due to the changes in their filtered load, tubular reabsorption, and/or altered urine volume. Therefore, these factors should be considered in interpretation of the changes observed in plasma or urine of the target metabolite(s). Fasting plasma and urine samples from 180 CKD patients and 120 age-matched healthy controls were determined by UPLC-HDMS-metabolomics and quantitative real-time RT-PCR techniques. Compared with healthy controls, patients with CKD showed activation of NF-κB and up-regulation of pro-inflammatory and pro-oxidant mRNA and protein expression as well as down-regulation of Nrf2-associated anti-oxidant gene mRNA and protein expression, accompanied by activated canonical Wnt/β-catenin signaling. 124 plasma and 128 urine metabolites were identified and 40 metabolites were significantly altered in both plasma and urine. Plasma concentration and urine excretion of 25 metabolites were distinctly different between CKD and controls. They were related to amino acid, methylamine, purine and lipid metabolisms. Logistic regression identified four plasma and five urine metabolites. Parts of them were good correlated with eGFR or serum creatinine. 5-Methoxytryptophan and homocystine and citrulline were good correlated with both eGFR and creatinine. Clinical factors were incorporated to establish predictive models. The enhanced metabolite model showed 5-methoxytryptophan, homocystine and citrulline have satisfactory accuracy, sensitivity and specificity for predictive CKD. The dysregulation of CKD was related to amino acid, methylamine, purine and lipid metabolisms. 5-methoxytryptophan, homocystine and citrulline could be considered as additional GFR-associated biomarker candidates and for indicating advanced renal injury. CKD caused dysregulation of the plasma and urine metabolome, activation of inflammatory/oxidative pathway and Wnt/β-catenin signaling and suppression of antioxidant pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369369PMC
http://dx.doi.org/10.1016/j.redox.2017.03.017DOI Listing

Publication Analysis

Top Keywords

plasma urine
20
5-methoxytryptophan homocystine
12
homocystine citrulline
12
urine
9
plasma
8
plasma concentration
8
metabolites altered
8
healthy controls
8
mrna protein
8
protein expression
8

Similar Publications

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Background/objectives: Urinary fluoride (UF) is the most well-established biomarker for fluoride exposure, and understanding its distribution can inform risk assessment for potential adverse systemic health effects. To our knowledge, this study is the first to report distributions of UF among youth according to sociodemographic factors in a nationally representative United States (US) sample.

Methods: The study included 1191 children aged 6-11 years and 1217 adolescents aged 12-19 years from the National Health and Nutrition Examination Survey (NHANES) 2015-2016.

View Article and Find Full Text PDF

This study aimed to evaluate the diagnostic potential of soluble Programmed Death Ligand 1 (sPD-L1) and Programmed Death 1 (sPD-1) molecules in plasma, along with urinary mRNA biomarkers-Prostate-Specific Membrane Antigen (), Prostate Cancer Antigen 3 (), and androgen receptor () genes-for identifying clinically significant prostate cancer (PCa), defined as pathological stage 3. In a cohort of 68 PCa patients, sPD-L1 and sPD-1 levels were quantified using ELISA, while mRNA transcripts were measured by RT-qPCR. Results highlight the potential of integrating these liquid-based biomarkers.

View Article and Find Full Text PDF

Urine-derived mesenchymal stromal/stem cells (USCs) could be a valuable source of cells in regenerative medicine because urine can be easily collected non-invasively. In this paper, USCs were isolated from both healthy dogs and dogs affected by chronic kidney disease (CKD), and the efficacy of collection methods (spontaneous micturition, bladder catheterization, and cystocentesis) were compared. Isolated cells were cultured in the presence of platelet-rich plasma and studied for their proliferative capacity (growth curve, doubling time, and colony forming unit), differentiation properties, expression of mesenchymal markers, and Klotho protein.

View Article and Find Full Text PDF

(1) Background: The RoXsta system has been developed as a rapid, effective means of profiling different types of antioxidant activity. The purpose of this study was to examine its performance utilizing a diverse array of biological fluids including semen, blood plasma, serum, urine, saliva, follicular fluid and plant extracts. (2) Methods: The RoXsta system was used to assess the ability of different fluids to suppress free radical formation as well as scavenge a variety of toxic oxygen metabolites including free radicals and both hydrogen and organic peroxides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!