The inadequate management practices in industrial textile effluents have a considerable negative impact on the environment and human health due to the indiscriminate release of dyes. Photocatalysis is one of the diverse advance oxidation processes (AOPs) and titanium dioxide (TiO) is recognized for its high oxidation and reduction power. A composite photocatalyst of FeO/TiO is synthesized using different mass ratios of Fe:TiO to improve its photoactivity. The composite photocatalyst is calcined at 300-900 °C. Their photocatalytic activity for the degradation of Congo red (CR) and methyl orange (MO) is investigated by total organic carbon (TOC) analysis. The formation and characterization of the as-prepared composite are studied by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). The effect of calcination temperature on the composite FeO/TiO photocatalyst is investigated using Fourier transform infrared spectroscopy (FTIR). The photocatalytic activity and the phase conversion are studied by X-ray diffraction (XRD). The specific surface area of photocatalysts at different calcination temperatures is investigated based on Brunauer-Emmett-Teller (BET) surface area analysis. Results show that at an optimum calcination temperature of 300 °C for the photocatalyst preparation, the specific surface area is maximum and the photocatalyst has the highest photoactivity. Thus, the degradation of organic materials reaches 62.0% for MO and 46.8% for CR in the presence of FeO/TiO (0.01 w:w Fe:TiO) calcined at 300 °C with the highest specific surface area (98.73 m/g). The transformation of TiO from anatase to rutile is facilitated by high temperature and high concentration of iron while high crystallization and particle size increase occur. An optimum calcination temperature of 300 °C is found at which the degradation of typical dyes in textile industries is maximum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2017.03.030 | DOI Listing |
Int J Pharm
December 2024
School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China. Electronic address:
This study investigates the effect of silanol density on the surface of glass containers on the stability of monoclonal antibody (mAb) formulations subjected to mechanical stress. By calcining Type I glass containers at different temperatures, we altered the concentration of silanols on the glass surface and examined its impact on the stability of protein formulations under mechanical stress. Contact angle measurements and Fourier Transform Infrared (FTIR) spectroscopy indicated that silanol formation influences the hydrophilicity of the surface.
View Article and Find Full Text PDFSci Rep
December 2024
Huaxin Cement Co., Ltd, Huaxin Building, No. 426, Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan, 430070, China.
This study delves into the challenges posed by the low-temperature calcination of high-ferrite Portland cement (HFPC) clinker and explores the potential of boron oxide (BO) as a stabilizing agent. Clinker production is a major contributor to global carbon dioxide emissions, and finding sustainable solutions is paramount. At 1350 °C, the HFPC clinker exhibits severe pulverization due to the metastable nature of the CS phase formed at low temperature.
View Article and Find Full Text PDFSci Rep
December 2024
ENET Centre, VSB- Technical University of Ostrava, Ostrava, Czech Republic.
The present investigation provides an easy and affordable strategy for fabrication of functional ceramics BiNaTiO-SrFeO (BNT-SrF5) thick films on a flexible, inexpensive and electrically integrated substrate using electrophoretic deposition process (EPD). EPD is a widely accepted, environmentally friendly method for applying coatings from a colloidal suspension to conductive substrates. Lead-free ferroelectric BNT-SrF5 powder was synthesized by solid state method to fabricate bulk samples and thick films (30-160 μm) by EPD process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!