AI Article Synopsis

  • Induction of oral tolerance to the hapten DNFB helps prevent allergic contact dermatitis (ACD) in mice, and this study explores the role of microbiota and TLR4 in this process.
  • Researchers found that oral tolerance was significantly impaired in germ-free mice and those lacking TLR4, indicating that TLR4 is crucial for this tolerance induction.
  • The results suggest that TLR4's function is linked to the activity of intestinal dendritic cells, which are important for promoting regulatory T-cell conversion, highlighting the potential for TLR4-based therapies to enhance oral tolerance and treat ACD in humans.

Article Abstract

Background: Induction of oral tolerance to haptens is an efficient way to prevent allergic contact dermatitis (ACD) in mice. Toll-like receptor (TLR)-mediated sensing of the microbiota contributes to gut homeostasis, yet whether it contributes to induction of oral tolerance has not been documented.

Objective: We examined whether oral tolerance to the contact sensitizer 2,4-dinitro-fluorobenzene (DNFB) depends on microbiota/TLRs and evaluated the role of TLR4 on the tolerogenic function of intestinal dendritic cells (DCs).

Methods: Oral tolerance was induced by DNFB gavage in germ-free and mice deficient in several TLRs. Tolerance was assessed by means of suppression of contact hypersensitivity and hapten-specific IFN-γ-producing effector T cells. The tolerogenic function of intestinal DCs was tested by adoptive transfer experiments, ex vivo hapten presentation, and forkhead box p3 regulatory T-cell conversion.

Results: Oral tolerance induced by DNFB gavage was impaired in germ-free mice and TLR4-deficient mice. Bone marrow chimeras revealed that TLR4 expression on hematopoietic cells was necessary for oral tolerance induction. TLR4 appeared to be essential for the ability of intestinal dendritic cells from DNFB-fed mice to inhibit ACD on adoptive transfer. Indeed, TLR4 conditioned the in vivo mobilization to mesenteric lymph nodes of intestinal migratory CD103 DCs carrying oral DNFB, especially the CD103CD11b DC subset expressing the vitamin A-converting enzyme retinaldehyde dehydrogenase and specialized in forkhead box p3-positive regulatory T-cell conversion.

Conclusions: Our data demonstrate that TLR4 conditions induction of oral tolerance to DNFB through licensing tolerogenic gut DCs. Oral biotherapy with TLR4 ligands might be useful to potentiate oral tolerance to haptens and alleviate ACD in human subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2017.02.022DOI Listing

Publication Analysis

Top Keywords

oral tolerance
36
intestinal dendritic
12
induction oral
12
oral
11
tolerance
10
toll-like receptor
8
allergic contact
8
contact dermatitis
8
tolerance haptens
8
tolerogenic function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!