Thyroid hormones (THs) play important roles in vertebrates such as the control of the metabolism, development and seasonality. Given the pleiotropic effects of thyroid disorders (developmental delay, mood disorder, tachycardia, etc), THs signaling is highly investigated, specially using mammalian models. In addition, the critical role of TH in controlling frog metamorphosis has led to the use of Xenopus as another prominent model to study THs action. Nevertheless, animals regarded as non-model species can also improve our understanding of THs signaling. For instance, studies in amphioxus highlighted the role of Triac as a bona fide thyroid hormone receptor (TR) ligand. In this review, we discuss our current understanding of the THs signaling in the different taxa forming the metazoans (multicellular animals) group. We mainly focus on three actors of the THs signaling: the ligand, the receptor and the deiodinases, enzymes playing a critical role in THs metabolism. By doing so, we also pinpoint many key questions that remain unanswered. How can THs accelerate metamorphosis in tunicates and echinoderms while their TRs have not been yet demonstrated as functional THs receptors in these species? Do THs have a biological effect in insects and cnidarians even though they do not have any TR? What is the basic function of THs in invertebrate protostomia? These questions can appear disconnected from pharmacological issues and human applications, but the investigation of THs signaling at the metazoans scale can greatly improve our understanding of this major endocrinological pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2017.03.021 | DOI Listing |
J Exp Biol
January 2025
University of Guelph, 50 Stone Rd E, Guelph, N1G 2M7, Canada.
The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates, and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids, and molluscs.
View Article and Find Full Text PDFZhonghua Yan Ke Za Zhi
January 2025
Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin300052, China.
J Hazard Mater
December 2024
Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, Guizhou, PR China. Electronic address:
Arsenic is a ubiquitous hazardous metalloid that poses a significant threat to human health. Although researchers have investigated the detrimental effects of arsenic on the thyroid, a comprehensive exploration of its toxicological impact and underlying molecular mechanisms remains to be conducted. Both this study and our previous reports demonstrated that chronic exposure to sodium arsenite (NaAsO) results in histological impairment and dysfunction of the thyroid glands in Sprague-Dawley (SD) rats.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina.
Thyroid carcinoma (TC) is the most common endocrine neoplasia, with its incidence increasing in the last 40 years worldwide. The determination of genetic and/or protein markers for thyroid carcinoma could increase diagnostic precision. Accumulated evidence shows that Protein kinase C alpha (PKCα) contributes to tumorigenesis and therapy resistance in cancer.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; German Center for Diabetes Research e.V., 85764 Neuherberg, Germany. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!