Exposure to sunlight ultraviolet-A (UVA), the main component of solar UV reaching the eyes, is suspected to play an important part in the onset of ocular pathologies. UVA primary biological deleterious effects arise from the photo-induction of oxidative stress in cells. However, the molecular bases linking UVA-induced oxidation to UVA toxicity in eyes remain poorly understood, especially with regards to the cornea. To shed some light on this issue, we have investigated the susceptibility and response potential of the different corneal cellular layers (epithelium, stroma and endothelium) to UVA-induced oxidation. We have monitored UVA-induced immediate effects on cellular redox balance, on mitochondrial membrane potential, on 8-Hydroxy-2'-deoxyguanosine (8-OHdG) accumulation in cellular DNA and on S-glutathionylated proteins (PSSG) levels along whole rabbit corneas. Higher redox imbalance was observed in the posterior part of the cornea following irradiation. Conversely, UVA-altered mitochondrial membrane potentials were observed only in anterior portions of the cornea. UVA-induced 8-OHdG were found in nuclear DNA of epithelia, while they were found in both nuclear and mitochondrial DNA in stromal and endothelial cells. Finally, significantly higher levels of cytosolic PSSG were measured in epithelia and endothelia immediately after UVA exposure, but not in stromas. Taken together, our findings indicate that while corneal epithelial cells are subjected to important modifications in response to UVA exposure, they efficiently limit the early manifestations of UVA-induced toxicity. On the other hand, the corneal endothelium is more susceptible to UVA-induced oxidation-related toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.022 | DOI Listing |
Pharmaceutics
December 2024
School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.
View Article and Find Full Text PDFMar Drugs
November 2024
Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland.
Commun Biol
November 2024
Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
Fuchs Endothelial Corneal Dystrophy (FECD) is an aging disorder characterized by expedited loss of corneal endothelial cells (CEnCs) and heightened DNA damage compared to normal CEnCs. We previously established that ultraviolet-A (UVA) light causes DNA damage and leads to FECD phenotype in a non-genetic mouse model. Here, we demonstrate that acute treatment with chemical stressor, menadione, or physiological stressors, UVA, and catechol estrogen (4-OHE), results in an early and increased activation of ATM-mediated DNA damage response in FECD compared to normal CEnCs.
View Article and Find Full Text PDFBioresour Bioprocess
October 2024
Beijing Key Laboratory of Plant Resource Research and Development, College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.
Background: Lychee seeds were fermented by three kinds of bacteria (Lactobacillus plantarum, Saccharomyces cerevillus and ganoderma lucidum mycelium), and two effective strains were selected by two indexes of activity content and antioxidant, so as to further verify whether lychee seeds have waste multiplication effect and can protect cells damaged by oxidation from anti-inflammatory, anti-aging and safety.
Results: The contents of polyphenols, flavonoids and proteins in the solution fermented by Ganoderma lucidum mycelium did not increase, thus affecting the antioxidant capacity of the solution was far less than that of the water extract. The active content of the other two fermentation solutions was higher than that of the water extract, and the ability of scavenging free radicals of the two solutions increased with the increase of the volume fraction.
J Biochem Mol Toxicol
November 2024
Medical School, Nanjing University, Nanjing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!