Lipids are essential components of exosomal membranes, and it is well-known that specific lipids are enriched in exosomes compared to their parent cells. In this review we discuss current knowledge about the lipid composition of exosomes. We compare published data for different lipid classes in exosomes, and what is known about their lipid species, i.e. lipid molecules with different fatty acyl groups. Moreover, we elaborate on the hypothesis about hand-shaking between the very-long-chain sphingolipids in the outer leaflet and PS 18:0/18:1 in the inner leaflet, and we propose this to be an important mechanism in membrane biology, not only for exosomes. The similarity between the lipid composition of exosomes, HIV particles, and detergent resistant membranes, used as lipid rafts models, is also discussed. Furthermore, we summarize knowledge about the role of specific lipids and lipid metabolizing enzymes on the formation and release of exosomes. Finally, the use of exosomal lipids as biomarkers and how the lipid composition of exosomes may be of importance for researchers aiming to use exosomes as drug delivery vehicles is discussed. In conclusion, we have summarized what is presently known about lipids in exosomes and identified issues that should be taken into consideration in future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plipres.2017.03.001 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Facultad de Ciencias, Sección Limnología, IECA, Universidad de la República, Montevideo, Uruguay.
The biochemical composition of sediments, which depends on the origin of the organic matter (OM), is decisive in methane (CH) production. This study aimed to determine the CH produced under anaerobic conditions from different substrates: native reservoir sediments and sediments with the addition of complex OM from Microcystis spp. blooms and terrestrial plants (pasture), alongside the biochemical characterization of the substrates used.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan.
A novel aerobic marine bacterium, FRT2, isolated from surface water of a fishing port in Fukui, Japan, was characterised based on phylogenomic and phylogenetic analyses combined with classical phenotypic and chemotaxonomic characterisations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FRT2 clustered with genus Leeuwenhoekiella. Closest relatives of FRT2 were Leeuwenhoekiella palythoae KMM 6264 and Leeuwenhoekiella nanhaiensis G18 with 16S rRNA gene sequence identities of 95.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ);
Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.
View Article and Find Full Text PDFAs more powerful high performance computing resources are becoming available, there is a new opportunity to bring the unique capabilities of molecular dynamics (MD) simulations to cell-scale systems. Membranes are ubiquitous within cells and are responsible for a diverse set of essential biological functions, but building atomistic models of cell-scale membranes for MD simulations is immensely challenging because of their vast sizes, complex geometries, and complex compositions. To meet this challenge, we have developed xMAS Builder (E perimentally-Derived embranes of rbitrary hape Builder), which is designed to take experimental lipidomics and structural (e.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Hematology, Jining NO. 1 People's Hospital, Jining, 272000, People's Republic of China.
Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!