The present study was aimed at investigating the efficacy of chitosan as a wall material for microencapsulation of squalene by spray drying for functional food applications. Based on different core to wall material ratio (1:1, 0.5:1 and 0.3:1 on w/w basis), emulsions were prepared and evaluated in terms of emulsion stability, particle size, zeta potential, polydispersity Index (PDI), rheology and microstructure. The optimized emulsion combination was spray dried and characterized, physically and chemically. The encapsulation efficiency of the powder was found to be 26±0.6% whereas other properties such as particle size, zeta potential, water activity, hygroscopicity, Carr Index, Hausner ratio have shown satisfactory results. SEM analysis showed that the squalene microcapsules were smooth spherical particles free from dents and fissures. FTIR data further confirmed the encapsulation of squalene with chitosan. However, TGA, oxidative stability and accelerated Rancimat results showed that chitosan was not able to protect squalene from oxidation during storage. The results suggest that chitosan is not an appropriate wall material for microencapsulation of squalene and hence a combination of wall materials could be attempted for the encapsulation of squalene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.03.114DOI Listing

Publication Analysis

Top Keywords

wall material
16
material microencapsulation
12
microencapsulation squalene
12
chitosan wall
8
squalene spray
8
spray drying
8
oxidative stability
8
particle size
8
size zeta
8
zeta potential
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!