Stream-aquifer and in-stream processes affecting nitrogen along a major river and contributing tributary.

J Contam Hydrol

Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523-1372, United States.

Published: April 2017

This study assesses the spatio-temporal patterns of water and nutrient mass exchange in a stream-riparian system of a major river and a contributing tributary in an irrigated semi-arid region. Field monitoring is performed along reaches of the Arkansas River (4.7km) and Timpas Creek (2.0km) in southeastern Colorado during the 2014 growing season, with water quantity and water quality data collected using a network of in-stream sampling sites and groundwater monitoring wells. Mass balance approaches were used to identify temporal and spatial trends in flow, nitrogen (N), and salinity in stream-aquifer exchange. In the Arkansas River, percent decrease of N concentration along the study reach averaged 36% over the period, with results from a stochastic mass balance simulation indicating a 90% probability that 44% to 50% of NO-N mass in the study reach (109-124kg/day/km) was removed by in-stream processes between 1 September and 8 November. Results suggest that contact with organic-rich river bed sediments has a strong impact on N removal. A greater decrease in concentrations of NO-N along the reach during the low flow period suggests the effect of both in-stream processes and dilution by inflowing groundwater that undergoes denitrification as it flows through the riparian and hyporheic zones into the river. In contrast, N concentration decreases in the smaller Timpas Creek were negligible. Results for the Arkansas River also are in contrast with other large agriculturally-influenced rivers, which have not exhibited capacity to remove N at significant rates. Results provide important insights across spatial and temporal scales and point to the need for investigating nutrient dynamics in large streams draining agriculturally-dominated watersheds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2017.03.003DOI Listing

Publication Analysis

Top Keywords

in-stream processes
12
arkansas river
12
major river
8
river contributing
8
contributing tributary
8
timpas creek
8
mass balance
8
study reach
8
river contrast
8
river
7

Similar Publications

Estimating constituent loads in streams and rivers is a crucial but challenging task due to low-frequency sampling in most watersheds. While predictive modeling can augment sparsely sampled water quality data, it can be challenging due to the complex and multifaceted interactions between several sub-watershed eco-hydrological processes. Traditional water quality prediction models, typically calibrated for individual sites, struggle to fully capture these interactions.

View Article and Find Full Text PDF

Identifying the origins of storm fluvial particulate organic carbon (POC) provides information about the hydrological connectivity within the river corridor and the roles of the land-stream interface in the carbon cycle. However, current understanding of storm-induced POC source dynamics is constrained by observations limited in space and time. This study presents a unique approach integrating higher spatial and temporal resolution sampling with a multi-biomarker analysis to better understand POC source dynamics across scales.

View Article and Find Full Text PDF

Investigation and modeling of land use effects on water quality in two NYC water supply streams.

J Environ Manage

January 2025

71 Smith Ave., Bureau of Water Supply, New York City Department of Environmental Protection, Kingston, NY, 12401, USA.

The paired watershed monitoring approach is widely used to investigate hydrologic processes and water quality, providing streamflow and water quality records for long-term trend analysis, as well as data for developing and testing hydrologic models. In this study we use 20 years of streamflow and water quality data, along with a watershed model, to examine sources of stream nutrients and their changes over time in two small streams within the New York City water supply system. We compare sources and trends in stream nitrate and dissolved phosphorus in the urbanized Amawalk watershed with those of the predominantly forested Boyd Corners watershed in the Croton system of reservoirs.

View Article and Find Full Text PDF

Natural and anthropogenic factors controlling organic carbon storage in riverine wetlands along South Korea's four rivers.

Sci Rep

January 2025

Division of Earth and Environmental System Sciences, Department of Oceanography, Pukyong National University, 45 Yongso-ro, Nam-gu, 48513, Busan, Republic of Korea.

This study explores carbon sequestration in South Korea's riverine wetlands, focusing on the four major rivers: Han, Yeongsan, Geum, and Nakdong. Field data from the Yeongsan River wetland, including 3D topography surveys, grainsize analyses, and loss-on-ignition measurements, were used to assess carbon stocks and their environmental drivers. The Yeongsan River was selected as a representative site due to its geomorphological, hydrological, and climatic similarities with the other three major rivers, which influence sediment transport and carbon dynamics.

View Article and Find Full Text PDF

A unified subregional framework for modeling stream water quality across watersheds of a hydrologic subregion.

Sci Total Environ

January 2025

Department of Civil, Architectural, and Environmental Engineering, North Carolina A&T State University, 1101 E Market St., Greensboro 27411, NC, USA.

Modeling stream water quality is informed by knowledge about pertinent factors and processes. The models must be validated against water quality observations, which may exist sufficiently in some watersheds (data rich watersheds) but may be limited or lacking in other cases (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!