Purpose: Although recruitment maneuvers have been advocated as part of a lung protective ventilation strategy, their effects on cerebral physiology during elective neurosurgery are unknown. Our objectives were to determine the effects of an alveolar recruitment maneuver on subdural pressure (SDP), brain relaxation score (BRS), and cerebral perfusion pressure among patients undergoing supratentorial tumour resection.
Methods: In this prospective crossover study, patients scheduled for resection of a supratentorial brain tumour were randomized to undergo either a recruitment maneuver (30 cm of water for 30 sec) or a "sham" maneuver (5 cm of water for 30 sec), followed by the alternative intervention after a 90-sec equilibration period. Subdural pressure was measured through a dural perforation following opening of the cranium. Subdural pressure and mean arterial pressure (MAP) were recorded continuously. The blinded neurosurgeon provided a BRS at baseline and at the end of each intervention. During each treatment, the changes in SDP, BRS, and MAP were compared.
Results: Twenty-one patients underwent the study procedure. The increase in SDP was higher during the recruitment maneuver than during the sham maneuver (difference, 3.9 mmHg; 95% confidence interval [CI], 2.2 to 5.6; P < 0.001). Mean arterial pressure decreased further in the recruitment maneuver than in the sham maneuver (difference, -9.0 mmHg; 95% CI, -12.5 to -5.6; P < 0.001). Cerebral perfusion pressure decreased 14 mmHg (95% CI, 4 to 24) during the recruitment maneuver. The BRS did not change with either maneuver.
Conclusion: Our results suggest that recruitment maneuvers increase subdural pressure and reduce cerebral perfusion pressure, although the clinical importance of these findings is thus far unknown. This trial was registered with ClinicalTrials.gov, NCT02093117.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12630-017-0863-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!