Biomethane: The energy storage, platform chemical and greenhouse gas mitigation target.

Anaerobe

Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary; Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári Krt. 62, Szeged 6726, Hungary; Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza L. Krt. 64, Szeged 6720, Hungary. Electronic address:

Published: August 2017

Results in three areas of anaerobic microbiology in which methane formation and utilization plays central part are reviewed. a.) Bio-methane formation by reduction of carbon dioxide in the power-to-gas process and the various possibilities of improvement of the process is a very intensively studied topic recently. From the numerous potential methods of exploiting methane of biological origin two aspects are discussed in detail. b.) Methane can serve as a platform chemical in various chemical and biochemical synthetic processes. Particular emphasis is put on the biochemical conversion pathways involving methanotrophs and their methane monooxygenase-catalyzed reactions leading to various small molecules and polymeric materials such as extracellular polysaccharides, polyhydroxyalkanoates and proteins. c.) The third area covered concerns methane-consuming reactions and methane emission mitigation. These investigations comprise the anaerobic microbiology of ruminants and approaches to diminishing methane emissions from ruminant animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anaerobe.2017.03.001DOI Listing

Publication Analysis

Top Keywords

platform chemical
8
anaerobic microbiology
8
methane
6
biomethane energy
4
energy storage
4
storage platform
4
chemical greenhouse
4
greenhouse gas
4
gas mitigation
4
mitigation target
4

Similar Publications

Inhibition of transcriptional regulation of detoxification genes contributes to insecticide resistance management in Spodoptera exigua.

Commun Biol

January 2025

Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Synthetic insecticides have been widely used for the prevention and control of disease vectors and agricultural pests. However, frequent uses of insecticides have resulted in the development of insecticide resistance in these insect pests. The resistance adversely affects the efficacy of insecticides, and seriously reduces the lifespan of insecticides.

View Article and Find Full Text PDF

Nanopore sequencing to detect A-to-I editing sites.

Methods Enzymol

January 2025

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore. Electronic address:

Adenosine-to-inosine (A-to-I) RNA editing, mediated by the ADAR family of enzymes, is pervasive in metazoans and functions as an important mechanism to diversify the proteome and control gene expression. Over the years, there have been multiple efforts to comprehensively map the editing landscape in different organisms and in different disease states. As inosine (I) is recognized largely as guanosine (G) by cellular machineries including the reverse transcriptase, editing sites can be detected as A-to-G changes during sequencing of complementary DNA (cDNA).

View Article and Find Full Text PDF

Development of nebulized inhalation delivery for fusion-inhibitory lipopeptides to protect non-human primates against Nipah-Bangladesh infection.

Antiviral Res

January 2025

CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France.

Nipah virus (NiV) is a lethal zoonotic paramyxovirus that can be transmitted from person to person through the respiratory route. There are currently no licensed vaccines or therapeutics. A lipopeptide-based fusion inhibitor was developed and previously evaluated for efficacy against the NiV-Malaysia strain.

View Article and Find Full Text PDF

Enthalpy is often the focal point when designing monomers for polymer circularity, but much less is explored on how entropy can be exploited to create polymers with synergistic circularity and properties. Here, we design a series of spiro-lactones (SLs) with closed-chain cycloalk(en)yl substituents at the α,α-position of δ-valerolactone (δVL), which, when combined with the parent δVL and -α,α-dialkyl-substituted δVL with open-chain alkyl groups, provide a desired platform for exploring the circular polymer design by focusing on the entropy change of polymerization. These SLs exhibit finely balanced (de)polymerizability that is regulated chiefly by entropy differentiation, allowing both the facile synthesis of polyester PSLs ( up to 1000 kg mol) in a living fashion and selective depolymerization of the PSLs to completely recover monomers under mild conditions (using a recyclable catalyst at 100 °C).

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!