Methamphetamine (METH) resulted in acute hepatic injury. However, the underlying mechanisms have not been fully clarified. In the present study, rats were treated with METH (15 mg/kg B.W.) for 8 injections (i.p.), and the levels of alanine transaminase, asparatate transaminase and ammonia in serum were significantly elevated over those in the control group, suggesting hepatic injury, which was evidenced by histopathological observation. Analysis of the liver tissues with microarray revealed differential expressions of a total of 332 genes in METH-treated rats. According to the GO and KEGG annotations, a large number of down-regulated cell cycle genes were screened out, suggesting that METH induced cell cycle arrest and deficient of cell cycle checkpoint. Related genes and proteins were confirmed by RT-qPCR and western blotting in rat livers, respectively. Moreover, treatment of Brl-3A cells with METH caused significant cytotoxic response and marked cell cycle arrest. Furthermore, overexpressions of Cidea, cleaved caspase 3 and PARP 1 in METH-treated rats indicated activation of apoptosis, while its inhibition alleviated cell death in Brl-3A cells, suggesting that activation of apoptosis took an important role in METH-induced hepatotoxicity. Taken together, the present study demonstrates that METH induced hepatotoxicity via inducing cell cycle arrest and activating apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2017.03.030 | DOI Listing |
Clin Cancer Res
January 2025
Moffitt Cancer Center, Tampa, Florida, United States.
Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.
View Article and Find Full Text PDFDiscov Oncol
January 2025
School of Medicine, Southeast University, Nanjing, Jiangsu, China.
Background: Nucleolar protein 7 (NOL7), a specific protein found in the nucleolus, is crucial for maintaining cell division and proliferation. While the involvement of NOL7 in influencing the unfavorable prognosis of metastatic melanoma has been reported, its significance in predicting the prognosis of patients with Hepatocellular Carcinoma (HCC) remains unclear.
Methods: Aberrant expression of NOL7 in HCC and its prognostic value were evaluated using multiple databases, including TCGA, GTEx, Xiantao Academic, HCCDB, UALCAN, TISCH, and STRING.
Bot Stud
January 2025
Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P. R. China.
The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!