SCFAs Control Skin Immune Responses via Increasing Tregs.

J Invest Dermatol

Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; PRESTO, Japan Science and Technology Agency, Saitama, Japan. Electronic address:

Published: April 2017

We are surrounded by billions of microbes, and our immune system is substantially affected by the commensal bacteria on the surface of our body. Schwarz et al. describe the immune-suppressive effect of sodium butyrate, a bacterial metabolite that is categorized as one of the short-chain fatty acids, during skin inflammatory responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2016.12.022DOI Listing

Publication Analysis

Top Keywords

scfas control
4
control skin
4
skin immune
4
immune responses
4
responses increasing
4
increasing tregs
4
tregs surrounded
4
surrounded billions
4
billions microbes
4
microbes immune
4

Similar Publications

Interactions between gut microbes and host promote degradation of various fiber components in Meishan pigs.

mSystems

January 2025

Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.

Unlabelled: Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs.

View Article and Find Full Text PDF

Objective: To investigate the roles of fecal short-chain fatty acids (SCFAs) in polycystic ovary syndrome (PCOS).

Methods: The levels of SCFAs (acetate, propionate, and butyrate) in 83 patients with PCOS and 63 controls were measured, and their relationships with various metabolic parameters were analyzed. Intestinal microbiome analysis was conducted to identify relevant bacteria.

View Article and Find Full Text PDF

Postoperative delirium after cardiac surgery associated with perioperative gut microbiota dysbiosis: Evidence from human and antibiotic-treated mouse model.

Anaesth Crit Care Pain Med

January 2025

Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, China. Electronic address:

Background: Research links gut microbiota to postoperative delirium (POD) through the gut-brain axis. However, changes in gut microbiota and fecal short-chain fatty acids (SCFAs) in POD patients during the perioperative period and their association with POD are unclear.

Methods: We conducted a nested case-control study among patients undergoing off-pump coronary artery bypass grafting, focusing on POD as the main outcome.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder (ADHD), a common neurodevelopmental disorder in children, is associated with alterations in gut microbiota and short-chain fatty acids (SCFAs), which are metabolites influencing the gut-brain axis. Evidence suggests that psychostimulant medications, widely used to manage ADHD symptoms, may also impact gut microbiota composition and SCFA levels. This study explores these potential effects by examining gut microbiota profiles and SCFA concentrations in unmedicated and medicated children with ADHD, compared to healthy controls.

View Article and Find Full Text PDF

Gut microbiota and plasma metabolites in pregnant mothers and infant atopic dermatitis: A multi-omics study.

World Allergy Organ J

January 2025

Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China.

Background: Many studies reported the influence of infants' gut microbiota on atopic dermatitis (AD) postnatally, yet the role of maternal gut microbiota and plasma metabolites in infants' AD remains largely unexplored.

Methods: Sixty-three pregnant mother-infants were enrolled and followed after childbirth in Guangzhou, China. Demographic information, maternal stool and plasma samples, and records for infants' AD were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!