The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364120PMC
http://dx.doi.org/10.1186/s11671-017-1995-yDOI Listing

Publication Analysis

Top Keywords

dynamic recrystallization
12
severe plastic
8
plastic deformation
8
structure properties
8
monotonous non-monotonous
8
deformation direction
8
active zones
8
deformation
7
alloys
5
deformation structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!