2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic man-made chemical compound contaminating the environment. An exposure of living organisms to TCDD may result in numerous disorders, including reproductive pathologies. The aim of the current study was to examine the effects of TCDD on the transcriptome of porcine granulosa cell line AVG-16. By employing next-generation sequencing (NGS) we aimed to identify genes potentially involved in the mechanism of TCDD action and toxicity in porcine granulosa cells. The AVG-16 cells were treated with TCDD (100 nM) for 3, 12 or 24 h, and afterwards total cellular RNA was isolated and sequenced. In TCDD-treated cells we identified 141 differentially expressed genes (DEGs; p < 0.05 and log2 fold change ≥1.0). The DEGs were assigned to GO term, covering biological processes, molecular functions and cellular components. Due to the large number of genes with altered expression, in the current study we analyzed only the genes involved in follicular growth, development and functioning. The obtained results showed that TCDD may affect ovarian follicle fate by influencing granulosa cell cycle, proliferation and DNA repair. The demonstrated over-time changes in the quantity and quality of genes being affected by TCDD treatment showed that the effects of TCDD on granulosa cells changed dramatically between 3-, 12- and 24-h of cell culture. This finding indicate that timing of gene expression measurement is critical for drawing correct conclusions on detailed relationships between the TCDD-affected genes and resulting intracellular processes. These conclusions have to be confirmed and extended by research involving proteomic and functional studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2017.03.055 | DOI Listing |
Domest Anim Endocrinol
January 2025
Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.
This paper reviews the role of endocrine regulators in swine ovarian cell functions, highlighting the intricate hormonal interactions that drive reproductive and metabolic processes. The pig represents a valuable model for human biology due to physiological and anatomical similarities. Understanding the endocrine mechanisms in swine can provide insights about human reproductive health and metabolic disorders.
View Article and Find Full Text PDFPoult Sci
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:
For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.
View Article and Find Full Text PDFGenome Biol
January 2025
College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
Background: In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient.
Results: Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries.
BMC Genomics
December 2024
Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
Background: The ovary is a central organ in the reproductive system that produces oocytes and synthesizes and secretes steroid hormones. Healthy development and regular cyclical change in the ovary is crucial for regulating reproductive processes. However, the key genes and metabolites that regulate ovarian development and pregnancy have not been fully elucidated.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain.
Copper nanoparticles (CuNPs) are known to affect many ovarian cell functions. CuNPs, prepared using a chemical reduction method, were fully characterized by different means (TEM, DLS, XRD, Z potential, XPS, and AES). The resulting colloidal suspension contained needle-like CuNPs aggregates made of a core of metallic copper and an oxidized surface of CuO and CuO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!