The present study, a novel haloalkaliphilic Cr(VI) tolerant bacterial strain, Cellulosimicrobium funkei AR8, was isolated and characterized for its high Cr(VI) reduction. In batch experiments, Cr(VI) reduction was evaluated under different parametric conditions which include different pH (5-9), temperature (25-45°C), NaCl (0-3%) and Cr(VI) concentrations (100-250μg/ml). Variations in the cell surface functional groups and morphology of the bacterial cells after Cr(VI) reduction were characterized by FT-IR and SEM-EDX. FT-IR analysis revealed that cell surface functional groups such as alkanes, amide and amines are involved in chromium biosorption and SEM-EDX results showed that biosorption and immobilization of chromium species on the cell surface. Bioconversion of Cr(VI) into Cr(III) by strain AR8 was confirmed by XRD and Raman spectroscopy analysis. Intracellular localization of reduced product (Cr(III)) was visualized by TEM analysis. Various instrumentation analysis verified that Cr(VI) removal mechanism of C. funkei AR8 strain was achieved by both extra and intracellular reducing machinery. Toxicity study revealed that the bacterially reduced product exerted less toxic effects on phenotypic, survival (91.31%), hatching (84.04%) and heart function (115±1.03 beats/min) of zebrafish (Danio rerio) embryos. Higher Cr(VI) reducing ability of the strain under haloalkaliphilic condition suggests the C. funkei AR8 as a novel and efficient strain for remediating Cr(VI) contaminated industrial effluents with high salinity and alkalinity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2017.03.037 | DOI Listing |
Environ Res
December 2024
School of Civil Engineering, Shandong University, Jinan 250061, China. Electronic address:
The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
Highly toxic halo-/nitro-substituted organics, often in low concentrations and with high hydrophobicity, make it difficult to obtain electrons for reduction when strongly electron-competing substances (e.g., O, H/HO, NO) coexist.
View Article and Find Full Text PDFLangmuir
December 2024
Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
This study compares the material characteristics and evaluates the Cr(VI) adsorption capacity of biochar derived from a novel byproduct (young durian fruit, YDF), synthesized using two pyrolysis methods (traditional and microwave-assisted). The optimal pyrolysis conditions for porosity were 800 °C and 800 W for 30 min, respectively. The traditional pyrolysis method yielded a very high surface area and pore volume (668 m/g; 0.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China. Electronic address:
Nitrogen-doped porous hydrochar (NPHC) was successfully synthesized by hydrothermal carbonization and activation with KHCO, which was employed for scavenging hexavalent chromium (Cr(VI)) and bisphenol A (BPA) in contaminated water. N doping increased the unique active sites such as amino and molecular N in NPHC for adsorbing contaminants, and enhanced the activation effect. Compared to original (HC) and N-doped hydrochar (NHC), the S of material improved from 3.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan. Electronic address:
The reduction of Cr(VI) to Cr(III) is key to lowering environmental toxicity and mobility, but the reverse process remains less understood. We investigated Cr(III) oxidation mechanisms across various pH levels and light wavelengths (185, 254, and 358 nm) in the presence of Fe(III). At pH 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!