The link between phenotype and fatty acid metabolism in advanced chronic kidney disease.

Nephrol Dial Transplant

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China.

Published: July 2017

Background: The kidney plays a central role in elimination of metabolic waste products and regulation of low-molecular weight metabolites via glomerular filtration, tubular secretion and reabsorption. Disruption of these processes results in profound changes in the biochemical milieu of the body fluids, which contribute to complications of chronic kidney disease (CKD) by inducing cytotoxicity and inflammation. Insight into the changes of the composition of metabolites and dysregulation of target genes and proteins enhances the understanding of the pathophysiology of CKD and its complications, and the development of novel therapeutic strategies. Chronic interstitial nephropathy is a common cause of CKD. The present study was designed to determine the effect of chronic interstitial nephropathy on the composition of serum metabolites and regulation of oxidative, inflammatory, fibrotic and cytoprotective pathways.

Methods: Male Sprague-Dawley rats were randomized to the CKD and control groups ( n  = 8/group). CKD was induced by administration of adenine (200 mg/kg body weight/day) by oral gavage for 3 weeks. The control group was treated with the vehicle alone. The animals were then observed for an additional 3 weeks, at which point they were sacrificed and kidney and serum samples were collected. Serum metabolomic and lipidomic analyses were performed using ultra-performance liquid chromatography-quadrupole time-of-flight high-definition mass spectrometry. Kidney tissues were processed for histological and molecular biochemical analyses.

Results: CKD rats exhibited increased plasma urea and creatinine concentrations, renal interstitial fibrosis, tubular damage and up-regulation of pro-inflammatory, pro-oxidant and pro-fibrotic pathways. Comparison of serum from CKD and control rats revealed significant differences in concentrations of amino acids and lipids including 33 metabolites and 35 lipid species. This was associated with marked abnormalities of fatty acid oxidation, and γ-linolenic acid and linoleic acid metabolism in CKD rats. Logistic regression analysis identified tetracosanoic acid, docosatrienoic acid, PC(18:3/14:1) and l -aspartic acid, tetracosanoic acid and docosatrienoic acid as novel biomarkers of chronic interstitial nephropathy.

Conclusions: Advanced CKD in rats with adenine-induced chronic interstitial nephropathy results in profound changes in the serum metabolome, activation of inflammatory, oxidative and fibrotic pathways, and suppression of cytoprotective and antioxidant pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfw415DOI Listing

Publication Analysis

Top Keywords

chronic interstitial
16
interstitial nephropathy
12
ckd rats
12
acid
9
ckd
9
fatty acid
8
acid metabolism
8
chronic kidney
8
kidney disease
8
profound changes
8

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is the most common type of fibrosis in lungs, characterized as a chronic and progressive interstitial lung disease involving pathological findings of fibrosis with a median survival of 3 years. Despite the knowledge accumulated regarding IPF from basic and clinical research, an effective medical therapy for the condition remains to be established. Thus, it is necessary for further research, including stem cell therapy, which will provide new insights into and expectations for IPF treatment.

View Article and Find Full Text PDF

: Interstitial fibrosis/tubular atrophy in kidney transplantation is an unspecific lesion induced by immune and non-immune factors, which determines the progression of chronic kidney disease. Hydroxyproline is an imino acid that is part of the molecule of collagen. The aim of this study was to assess hydroxyproline in urine microvesicles as a marker of fibrosis in the renal transplant patient.

View Article and Find Full Text PDF

The aging process significantly impacts lung physiology and is a major risk factor for chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and non-IPF interstitial lung fibrosis. This narrative clinical review explores the molecular and biochemical hallmarks of aging, such as oxidative stress, telomere attrition, genomic instability, epigenetic modifications, proteostasis loss, and impaired macroautophagy, and their roles in lung senescence. Central to this process are senescent cells, which, through the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and tissue dysfunction.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a poor prognosis. Its non-specific clinical symptoms make accurate prediction of disease progression challenging. This study aimed to develop molecular-level prognostic models to personalize treatment strategies for IPF patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!