A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differences in textural properties of cooked caponized and broiler chicken breast meat. | LitMetric

This study was aimed at evaluating textural properties of cooked chicken breast meats obtained from 3 production systems (conventional raising, feed modification, and caponization) and determining the relationship between instrumental parameters and sensory attributes associated with the texture of capon meat. Texture of cooked breast meats was determined using 3 instrumental methods: Warner-Bratzler Shear (WBS), texture profile analysis (TPA), and uniaxial compression (UC), and sensory analysis by trained panelists. The results indicated that cooked caponized meat showed the lowest values of WBS force, shear energy, hardness, Young's modulus of UC, and the 2 sensory attributes (firmness and number of chews) (P < 0.05). In contrast, springiness and juiciness were the highest in the caponized meat (P < 0.05), suggesting that capon meat was more tender and juicier than the others. Feed-modified chicken samples showed intermediate textural characteristics between the samples of capon and conventionally raised broiler. Pearson's correlation revealed that WBS force, shear energy, Young's modulus of UC, gumminess, and springiness were strongly correlated with 3 sensory attributes (firmness, number of chews, and juiciness). Partial least squares regression (PLSR) demonstrated that 72% of all sensory attributes for the first 2 PLSR components were explained by 36% of the instrumental parameters and the production systems. Loading and score plot illustrated that conventional raising contributed to a high degree of firmness and number of chews, and positively correlated with shear energy, WBS force, gumminess, hardness, and Young's modulus. Contrarily, caponization was negatively correlated with those sensory attributes. The univariate analysis indicated that firmness and number of chews were positively correlated with all instrumental parameters, except springiness. Juiciness was positively correlated with springiness but negatively correlated with the others. The study suggested that the cooked meat of capons could be differentiated from those of broilers raised conventionally and with feed-modified diets based on textural properties. Based on the optimized simulating equation, texture of caponized breast could be explained by WBS force, shear energy, Young's modulus, and gumminess.

Download full-text PDF

Source
http://dx.doi.org/10.3382/ps/pex006DOI Listing

Publication Analysis

Top Keywords

textural properties
8
properties cooked
8
cooked caponized
8
chicken breast
8
breast meats
8
sensory attributes
8
differences textural
4
cooked
4
caponized broiler
4
broiler chicken
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!