Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α-RuCl_{3}, we observe spin-wave spectra with a gap of ∼2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K=-6.8 meV and Γ=9.5 meV. These results demonstrate explicitly that Kitaev physics is realized in real materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.107203 | DOI Listing |
Phys Rev Lett
November 2024
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
The Kitaev honeycomb model supports gapless and gapped quantum spin liquid phases. Its exact solvability relies on extensively many locally conserved quantities. Any real-world manifestation of these phases would include imperfections in the form of disorder and interactions that break integrability.
View Article and Find Full Text PDFNano Lett
November 2024
Shenzhen Geim Graphene Center & Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
As topological quasi-particles in magnetic materials, skyrmions and antiskyrmions show potential in spintronics for information storage and computing. However, effectively controlling and separating these entities remain significantly challenging. Here, we demonstrate that anisotropic Kitaev exchange can distinctly influence the static and dynamic behaviors for skyrmions and antiskyrmions, thus aiding their manipulation and separation.
View Article and Find Full Text PDFNat Commun
November 2024
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
The two-dimensional Yukawa-Sachdev-Ye-Kitaev (2D-YSYK) model provides a universal theory of quantum phase transitions in metals in the presence of quenched random spatial fluctuations in the local position of the quantum critical point. It has a Fermi surface coupled to a scalar field by spatially random Yukawa interactions. We present full numerical solutions of a self-consistent disorder averaged analysis of the 2D-YSYK model in both the normal and superconducting states, obtaining electronic spectral functions, frequency-dependent conductivity, and superfluid stiffness.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
London Centre for Nanotechnology, University College London, Gordon Street, London, WC1H 0AH, United Kingdom.
We investigate the nature of the topological quantum phase transition between the gapless and gapped Kitaev quantum spin liquid phases away from the exactly solvable point. The transition is driven by anisotropy of the Kitaev couplings. At the critical point, the two Dirac points of the gapless Majorana modes merge, resulting in the formation of a semi-Dirac point with quadratic and linear band touching directions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!