Stimulated by experimental advances in electrolyte gating methods, we investigate theoretically percolation in thin films of inhomogeneous complex oxides, such as La_{1-x}Sr_{x}CoO_{3} (LSCO), induced by a combination of bulk chemical and surface electrostatic doping. Using numerical and analytical methods, we identify two mechanisms that describe how bulk dopants reduce the amount of electrostatic surface charge required to reach percolation: (i) bulk-assisted surface percolation and (ii) surface-assisted bulk percolation. We show that the critical surface charge strongly depends on the film thickness when the film is close to the chemical percolation threshold. In particular, thin films can be driven across the percolation transition by modest surface charge densities. If percolation is associated with the onset of ferromagnetism, as in LSCO, we further demonstrate that the presence of critical magnetic clusters extending from the film surface into the bulk results in considerable enhancement of the saturation magnetization, with pronounced experimental consequences. These results should significantly guide experimental work seeking to verify gate-induced percolation transitions in such materials.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.106801DOI Listing

Publication Analysis

Top Keywords

surface charge
12
percolation
9
thin films
8
surface
6
percolation combined
4
combined electrostatic
4
electrostatic chemical
4
chemical doping
4
doping complex
4
complex oxide
4

Similar Publications

Target-assisted self-powered photoelectrochemical sensor based on AgS/BiOCl heterojunction for ultrasensitive chlorpyrifos detection.

Talanta

December 2024

College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China. Electronic address:

Chlorpyrifos (CPF), a widely used organophosphorus pesticide, presents substantial risks to both environmental and human health due to its persistent accumulation, thereby necessitating the development of effective detection methods. Self-powered photoelectrochemical (PEC) sensors, as an innovative technology, address the limitations inherent in conventional sensors, such as susceptibility to interference and inadequate signal response. Herein, we synthesized AgS/BiOCl as a photosensitive material, employing it as a light-harvesting substrate and a signal-transducing platform to develop a self-powered PEC sensor for the detection of CPF.

View Article and Find Full Text PDF

Carbocation charge as an interpretable descriptor for the catalytic activity of hydrolytic nanozymes.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China. Electronic address:

A universal theory for predicting the catalytic activity of hydrolytic nanozymes has yet to be developed. Herein, by investigating the polarization and hydrolysis mechanisms of nanomaterials towards amide bonds, carbocation charge was identified as a key electronic descriptor for predicting catalytic activity in amide hydrolysis. Through machine learning correlation analysis and the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm, this descriptor was interpreted to associate with the d-band center and Lewis acidity on the nanomaterial surface.

View Article and Find Full Text PDF

β-cyclodextrin polymers as a new sorbent for solid-phase extraction of xenobiotics in Urine.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

This study systematically assessed the performance of a newly developed solid-phase extraction (SPE) material, cellulose-supported aminated β-cyclodextrin polymer (amine-β-CDP@Cellulose), in determining 44 xenobiotics, encompassing endocrine-disrupting chemicals (EDCs), pharmaceuticals, and food additives in urine samples. The primary objective of the research was to synthesize a new sorbent, optimize the extraction protocol, and elucidate the underlying adsorption and desorption mechanisms. Following optimization, it was observed that amine-β-CDP@Cellulose achieved recoveries ranging from 80 % to 120 % for 28 of the 44 targeted xenobiotics, with only three compounds showing recoveries below 50 %.

View Article and Find Full Text PDF

Microplastics (MPs) in nature inevitably undergo various aging processes and may exhibit varied interfacial interactions with the coexisted contaminants. Here several discarded disposable polyethylene and polypropylene plastic packaging materials were collected and employed as the raw materials of MPs, and the effects of stimulated UV irradiation and microbial colonization on the variations of surface physicochemical characteristics, including biofilm content, oxygen-containing functional groups, oxygen/carbon ratio, hydrophilicity and surface charge properties were explored. Simultaneously, the adsorption behavior of each MPs on the representative cationic dye crystal violet (CV), as well as the influences of salinity and pH of CV solution, was investigated.

View Article and Find Full Text PDF

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!