A new prototype air-liquid interface (ALI) exposure system, a flatbed aerosol exposure chamber termed NAVETTA, was developed to investigate deposition of engineered nanoparticles (NPs) on cultured human lung A549 cells directly from the gas phase. This device mimics human lung cell exposure to NPs due to a low horizontal gas flow combined with cells exposed at the ALI. Electrostatic field assistance is applied to improve NP deposition efficiency. As proof-of-principle, cell viability and immune responses after short-term exposure to nanocopper oxide (CuO)-aerosol were determined. We found that, due to the laminar aerosol flow and a specific orientation of inverted transwells, much higher deposition rates were obtained compared to the normal ALI setup. Cellular responses were monitored with postexposure incubation in submerged conditions, revealing CuO dissolution in a concentration-dependent manner. Cytotoxicity was the result of ionic and nonionic Cu fractions. Using the optimized inverted ALI/postincubation procedure, pro-inflammatory immune responses, in terms of interleukin (IL)-8 promoter and nuclear factor kappa B (NFκB) activity, were observed within short time, i.e. One hour exposure to ALI-deposited CuO-NPs and 2.5 h postincubation. NAVETTA is a novel option for mimicking human lung cell exposure to NPs, complementing existing ALI systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b00493DOI Listing

Publication Analysis

Top Keywords

human lung
16
exposure system
8
termed navetta
8
lung cell
8
cell exposure
8
exposure nps
8
immune responses
8
exposure
6
novel exposure
4
system termed
4

Similar Publications

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Purpose: To analyze the frequency and predictive factors of the development of postoperative pectus excavatum and scoliosis in children who underwent surgery for cystic lung disease.

Methods: This study examined patients who underwent surgery for cystic lung disease (open and thoracoscopic) between July 2000 and December 2018 with a > 3-year follow-up period. Lesion size, surgical outcomes, and subsequent musculoskeletal complications were compared between the open surgery and thoracoscopic surgery groups.

View Article and Find Full Text PDF

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!