Dual-energy Computed Tomography for the Evaluation of Enhancement of Pulmonary Nodules≤3 cm in Size.

J Thorac Imaging

*Department of Radiology, Stony Brook University Medical Center, Stony Brook, NY †Department of Radiology, Brooke Army Medical Center, San Antonio, TX ‡Uniformed Services University of the Health Sciences, Bethesda, MD.

Published: May 2017

Purpose: The aim of the study was to compare the accuracies of 4 different methods of assessing pulmonary nodule enhancement to distinguish benign from malignant solid pulmonary nodules using nondynamic contrast-enhanced dual-energy computed tomography.

Materials And Methods: Seventy-two patients (mean age, 62 y) underwent dual-energy chest computed tomography 3 minutes after intravenous contrast administration. Each of 118 pulmonary nodules (9±5.9 mm) were evaluated for enhancement by 4 methods: visual assessment, 3-dimensional automated postprocessing measurement tool, manually drawn region of interest with calculated iodine-related attenuation, and measurement of iodine concentration. The optimal cutoff for enhancement was defined as having the largest specificity among all cutoffs while maintaining 100% sensitivity. Accuracy of the methods was assessed with receiver operating characteristic curves.

Results: Ninety-three of 118 pulmonary nodules were benign (79%). Visual assessment of enhancement had sensitivity and specificity of 100% and 44%, respectively. For the automated 3-dimensional measurement tool, 20 HU was found to be the optimal threshold for defining enhancement, resulting in a specificity of 71% and a sensitivity of 100%, as well as an area under the curve (AUC) of 0.87 (95% confidence interval [CI], 0.82-0.92). The AUC was 0.79 (95% CI, 0.73-0.85) for the measured enhancement using a manually drawn region of interest. When a threshold of 21 HU was used for defining enhancement, maximum specificity was obtained (56%) while maintaining 100% sensitivity. The AUC for measured iodine concentration was 0.79 (95% CI, 0.77-0.85). At a cutoff iodine concentration of 0.6 mg/mL, the sensitivity was 100% with a specificity of 57%.

Conclusions: Although use of automated postprocessing had the highest specificity while maintaining 100% sensitivity, there were only minor clinically relevant differences between measurement techniques given that no single technique misclassified a malignant nodule as nonenhancing.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RTI.0000000000000263DOI Listing

Publication Analysis

Top Keywords

pulmonary nodules
12
iodine concentration
12
maintaining 100%
12
100% sensitivity
12
dual-energy computed
8
computed tomography
8
enhancement
8
118 pulmonary
8
visual assessment
8
automated postprocessing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!