The fragment spectra of protonated nitro-substituted benzodiazepines show an unusual fragment [M + H - 14] , which is shown by accurate mass measurement to be due to the loss of a nitrogen atom. Our investigations show that this apparent loss of atomic nitrogen is rather an attachment of molecular oxygen to the [M + H - NO ] ion, which is the main fragment ion in these spectra. The oxygen attachment is exothermic, and rate constants have been derived. MS spectra show that it is not easily reversible upon fragmentation of the adduct ion and that it is also observed with some secondary and tertiary fragments, which allows to limit the attachment site to the aromatic ring annulated to the diazepine moiety. Fragments of the oxygen adduct ion indicate that the O molecule dissociates in the adduct formation process, and the two oxygen atoms are bound to different sites of the ion. Comparison with radical cations generated by fragmentation of non-nitro-substituted benzodiazepines, none of which showed an oxygen attachment, and the fragmentation mechanisms involved in their formation indicates that the [M + H - NO ] ion is a distonic ion with the charge and radical site neighbored on the aromatic ring. From these results, we derive a proposal for the formation and structure of the [M + H - NO  + O ] ion, which explains the experimental observations. Copyright © 2015 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.3611DOI Listing

Publication Analysis

Top Keywords

loss atomic
8
atomic nitrogen
8
ion
8
[m + h - no ion
8
oxygen attachment
8
adduct ion
8
aromatic ring
8
oxygen
5
nitrogen even-electron
4
even-electron ions?
4

Similar Publications

Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).

View Article and Find Full Text PDF

The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.

View Article and Find Full Text PDF

Rationale: One of the most debilitating drawbacks of cisplatin chemotherapy is neurotoxicity which elicits memory impairment and cognitive dysfunction (chemobrain). This is primarily triggered by oxidative stress and inflammation. Captopril, an angiotensin-converting enzyme inhibitor, has been reported as a neuroprotective agent owing to its antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Alpha-1 antitrypsin (AAT) deficiency (AATD) is a monogenic disease caused by misfolding of AAT variants resulting in gain-of-toxic aggregation in the liver and loss of monomer activity in the lung leading to chronic obstructive pulmonary disease (COPD). Using high-throughput screening, we discovered a bioactive natural product, phenethyl isothiocyanate (PEITC), highly enriched in cruciferous vegetables, including watercress and broccoli, which improves the level of monomer secretion and neutrophil elastase (NE) inhibitory activity of AAT-Z through the endoplasmic reticulum (ER) redox sensor protein disulfide isomerase (PDI) A4 (PDIA4). The intracellular polymer burden of AAT-Z can be managed by combination treatment of PEITC and an autophagy activator.

View Article and Find Full Text PDF

P2-NaMnNiCoO stabilized by optimal active facets for sodium-ion batteries.

J Colloid Interface Sci

January 2025

MOE Key Laboratory for UV Light-Emitting Materials and Technology, Department of Physics, Northeast Normal University, Changchun, Jilin 130024, PR China; Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China. Electronic address:

Considering factors such as crustal reserves, atomic mass, redox potential and energy density, sodium-ion batteries (SIBs) are regarded as the most promising alternative to lithium-ion batteries (LIBs). Transition metal-based layered oxides, especially typical NaMnO, stand out among cathode materials due to their low cost and high energy density. However, NaMnO cathodes face several challenges, including Jahn-Teller distortion, manganese dissolution, structural collapse, irreversible phase transition and significant capacity loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!