Cigarette smoke (CS) exposure and intrinsic factors such as the NADPH oxidases produce high levels of reactive oxygen species (ROS), ensuing inflammatory tissue injury. We previously demonstrated that CS-generated ROS, particularly hydrogen peroxide (HO), impaired adenosine stimulated wound repair. We hypothesized that CS exposure modulates expression of Dual oxidase 1 (Duox-1), a NADPH oxidases known to generate HO. To test this hypothesis, we used human bronchial epithelial cell line Nuli-1 and C57BL/6 mice. Cells were treated with 5% CS extract (CSE) for various periods of time, and mice were exposed to whole body CS for six weeks. Both CSE and CS treatment induced increased expression of Duox-1, and silencing of Doux-1 improved the rate of cell wound repair induced by CSE treatment. Nuli-1 cells pretreated with thapsigargin but not calcium ionophore exhibited increased Duox-1 mRNA expression. CSE treatment stimulated PKCα activation, which was effectively blocked by pretreatment with diphenylene iodonium, a NADPH oxidase inhibitor. Compared to control, lungs from CS-exposed mice showed a significant increase in PKCα activity and Duox-1 expression. Collectively, the data demonstrated that CS exposure upregulates expression of Duox-1 protein. This further leads to HO production and PKCα activation, inhibiting AAR-stimulated wound repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364501PMC
http://dx.doi.org/10.1038/srep44405DOI Listing

Publication Analysis

Top Keywords

wound repair
16
cse treatment
12
cigarette smoke
8
duox-1 expression
8
nadph oxidases
8
expression duox-1
8
pkcα activation
8
duox-1
6
expression
6
smoke impairs
4

Similar Publications

Background: Acne is an inflammatory skin disease afflicting the majority of the world's population at some point in their lifetime, and is seen to be chronic in about 50% of cases. Acne leads to significant social withdrawal, depression, and disfiguring scars in many cases. Available treatments are characterized by high rates of relapse, dangerous side effects, and social stigma, which often leads to poor patient compliance and treatment failure.

View Article and Find Full Text PDF

Background: Extracorporeal membrane oxygenation (ECMO) is a critical treatment for severe cardiopulmonary failure. However, traditional ECMO decannulation methods, such as manual compression and surgical repair, are associated with significant complications. This study evaluates suture-mediated closure devices, specifically Perclose ProGlide, as a potentially favorable decannulation strategy.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair.

View Article and Find Full Text PDF

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!