Three-dimensional (3-D) printing offers many potential advantages in designing and manufacturing plating systems for foot and ankle procedures that involve small, geometrically complex bony anatomy. Here, we describe the design and clinical use of a Ti-6Al-4V ELI bone plate (FastForward™ Bone Tether Plate, MedShape, Inc., Atlanta, GA) manufactured through 3-D printing processes. The plate protects the second metatarsal when tethering suture tape between the first and second metatarsals and is a part of a new procedure that corrects hallux valgus (bunion) deformities without relying on doing an osteotomy or fusion procedure. The surgical technique and two clinical cases describing the use of this procedure with the 3-D printed bone plate are presented within.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358518PMC
http://dx.doi.org/10.1097/BTO.0000000000000189DOI Listing

Publication Analysis

Top Keywords

bone plate
12
printed bone
8
hallux valgus
8
3-d printing
8
plate
5
plate novel
4
novel technique
4
technique surgically
4
surgically correct
4
correct hallux
4

Similar Publications

ANXA2 promotes chondrocyte differentiation and fracture healing by regulating the phosphorylation of STAT3 and PI3K/AKT signaling pathways.

Cell Signal

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:

Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.

View Article and Find Full Text PDF

Unlabelled: Mandibular reconstruction is essential for restoring both function and aesthetics after segmental resection due to tumoral pathology. This study aimed to conduct a comparative analysis of three reconstruction strategies for defects resulting from segmental mandibular resection, utilizing finite element analysis (FEA).

Methods: A digital model of the mandible was created from CBCT data and optimized for FEA.

View Article and Find Full Text PDF

Sandwiched Strut Allografts with Stem Retention to Treat Fragile Periprosthetic Femoral Fractures: A Case Report.

Medicina (Kaunas)

January 2025

Department of Orthopaedic Surgery, Chosun University Hospital, 365 Pilmundae-ro, Dong-gu, Gwangju 61453, Republic of Korea.

Managing periprosthetic femoral fractures is challenging, particularly in osteoporotic patients with fragile bones. Revision with a long stem is commonly considered but may fail to provide adequate fixation and stability in fragile bones. A novel approach using sandwiched strut allografts and controlled bone crushing with robust cable fixation can offer mechanical support and provide secondary stability to the loosened femoral stem and can be considered a treatment option for low-demand patients.

View Article and Find Full Text PDF

Clinical Efficacy of Three-Dimensional-Printed Pure Titanium Fracture Plates with Locking Screw Systems in Distal Tibia Fractures.

Medicina (Kaunas)

January 2025

Department of Orthopedic Surgery, Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro Seongbuk-gu, Seoul 02841, Republic of Korea.

Distal tibia fractures are high-energy injuries characterized by a mismatch between standard plate designs and the patient's specific anatomical bone structure, which can lead to severe soft tissue damage. Recent advancements have focused on the development of customized metal plates using three-dimensional (3D) printing technology. However, 3D-printed metal plates using titanium alloys have not incorporated a locking system due to the brittleness of these alloys.

View Article and Find Full Text PDF

The study aimed to evaluate a newly designed semicircular implant for the fixation of Vancouver Type B1 periprosthetic femoral fractures (PFFs) in total hip arthroplasty (THA) patients. To determine its strength and clinical applicability, the new implant was compared biomechanically with conventional fixation methods, such as lateral locking plate fixation and a plate combined with cerclage wires. : Fifteen synthetic femur models were used in this biomechanical study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!