https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=28336849&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 2833684920201001
2079-4991712017Jan13Nanomaterials (Basel, Switzerland)Nanomaterials (Basel)Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching.1510.3390/nano7010015In this study, we present the detailed investigation of the influence of the etching medium (acidic or basic Piranha solutions) and the etching time on the morphology and surface relief of ultrafine grained (UFG) and coarse grained (CG) titanium. The surface relief and morphology have been studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and the spectral ellipsometry. The composition of the samples has been determined by X-ray fluorescence analysis (XRF) and X-ray Photoelectron Spectroscopy (XPS). Significant difference in the etching behavior of UFG and CG titanium has been found. UFG titanium exhibits higher etching activity independently of the etching medium. Formed structures possess higher homogeneity. The variation of the etching medium and time leads to micro-, nano-, or hierarchical micro/nanostructures on the surface. Significant difference has been found between surface composition for UFG titanium etched in basic and acidic Piranha solution. Based on the experimental data, the possible reasons and mechanisms are considered for the formation of nano- and microstructures. The prospects of etched UFG titanium as the material for implants are discussed.NazarovDenis VDVSaint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia. dennazar1@yandex.ru.ZemtsovaElena GEGSaint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia. ezimtsova@yandex.ru.SolokhinAlexandr YuAYSaint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia. solohin150194@mail.ru.ValievRuslan ZRZSaint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia. rzvaliev@gmail.com.SmirnovVladimir MVMSaint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia. vms11@yandex.ru.engJournal Article20170113
SwitzerlandNanomaterials (Basel)1016102162079-4991UFG titaniumchemical etchingroughnesssurfacetitanium implantsThe authors declare no conflict of interest.
20161027201612820161292017325602017325602017325612017113epublish28336849PMC529520510.3390/nano7010015nano7010015Geetha M. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004.10.1016/j.pmatsci.2008.06.004Li Y., Yang C., Zhao H., Qu S., Li X., Li Y. New developments of Ti-based alloys for biomedical applications. Materials. 2014;7:1709–1800. doi: 10.3390/ma7031709.10.3390/ma7031709PMC545325928788539Brunette D.M., Tengvall P., Textor M., Thomsen P. Titanium in Medicine. Springer; Berlin/Heidelberg, Germany: New York, NY, USA: 2001. pp. 1–1019.Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles—A systematic analytical review. Acta Biomater. 2014;10:2379–2403. doi: 10.1016/j.actbio.2014.02.027.10.1016/j.actbio.2014.02.02724565531Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk Nanostructured Materials: Fundamentals and Applications. John Wiley &. Sons, Inc.; Hoboken, NJ, USA: 2014. pp. 1–440.Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003.10.1016/j.pmatsci.2006.02.003Mishnaevsky L., Levashov E., Valiev R.Z., Segurado J., Sabirov I., Enikeev N., Prokoshkin S., Solov’yov A.V., Korotitskiy A., Gutmanas E., et al. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater. Sci. Eng. R. Rep. 2014;81:1–19. doi: 10.1016/j.mser.2014.04.002.10.1016/j.mser.2014.04.002Lowe T.C., Valiev R.Z. Frontiers for Bulk Nanostructured Metals in Biomedical Applications. In: Tiwari A., Nordin A.N., editors. Advanced Biomaterials and Biodevices. JohnWiley & Sons, Inc.; Hoboken, NJ, USA: 2014. pp. 1–52.Bagherifard S., Ghelichi R., Khademhosseini A., Guagliano M. Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation. ACS Appl. Mater. Interfaces. 2014;6:7963–7985. doi: 10.1021/am501119k.10.1021/am501119k24755013Yang B., Uchida M., Kim H.M., Zhang X., Kukubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25:1003–1010. doi: 10.1016/S0142-9612(03)00626-4.10.1016/S0142-9612(03)00626-414615165Roy P., Berger S., Schmuki P. TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374.10.1002/anie.20100137421394857Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces Part I: Materials and surfaces. Prog. Mater. Sci. 2013;58:261–326. doi: 10.1016/j.pmatsci.2012.09.001.10.1016/j.pmatsci.2012.09.001Liu X., Chu P.K., Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R. 2004;47:49–121. doi: 10.1016/j.mser.2004.11.001.10.1016/j.mser.2004.11.001Vetrone F., Variola F., De Oliveira P.T., Zalzal S.F., Yi J.-H., Sam J., Bombonato-Prado K.F., Sarkissian A., Perepichka D.F., Wuest J.D., et al. Nanoscale oxidative patterning of metallic surfaces to modulate cell activity and fate. Nano Lett. 2009;9:659–665. doi: 10.1021/nl803051f.10.1021/nl803051f19159323Variola F., Brunski J.B., Orsini G., Tambasco de Oliveira P., Wazen R., Nanci A. Nanoscale surface modifications of medically relevant metals: State-of-the art and perspectives. Nanoscale. 2011;3:335–353. doi: 10.1039/C0NR00485E.10.1039/C0NR00485EPMC310532320976359Richert L., Vetrone F., Yi J.-H., Zalzal S.F., Wuest J.D., Rosei F., Nanci A. Surface Nanopatterning to Control Cell Growth. Adv. Mater. 2008;20:1488–1492. doi: 10.1002/adma.200701428.10.1002/adma.200701428Miyamoto H. Corrosion of ultrafine grained materials by severe plastic deformation, an overview. Mater. Trans. 2016;57:559–572. doi: 10.2320/matertrans.M2015452.10.2320/matertrans.M2015452Kim H.S., Yoo S.J., Ahn J.W., Kim D.H., Kim W.J. Ultrafine grained titanium sheets with high strength and high corrosion resistance. Mater. Sci. Eng. A. 2011;528:8479–8485. doi: 10.1016/j.msea.2011.07.074.10.1016/j.msea.2011.07.074Balyanov A., Kutnyakova J., Amirkhanova N.A., Stolyarov V.V., Valiev R.Z., Liao X.Z., Zhao Y.H., Jiang Y.B., Xu H.F., Lowe T.C., et al. Corrosion resistance of ultra fine-grained Ti. Scr. Mater. 2004;51:225–229. doi: 10.1016/j.scriptamat.2004.04.011.10.1016/j.scriptamat.2004.04.011Matykina E., Arrabal R., Valiev R.Z., Molina-Aldareguia J.M., Belov P., Sabirov I. Electrochemical anisotropy of nanostructured titanium for biomedical implants. Electrochim. Acta. 2015;176:1221–1232. doi: 10.1016/j.electacta.2015.07.128.10.1016/j.electacta.2015.07.128Nazarov D.V., Zemtsova E.G., Valiev R.Z., Smirnov V.M. Specific features of etching of ultrafine and coarse-grained titanium in base and acid solutions of hydrogen peroxide. Rus. J. Appl. Chem. 2016;89:284–286. doi: 10.1134/S1070427216020269.10.1134/S1070427216020269D'jkonov G.S., Stenina E.V., Sviridova E.V., Salimgareeva G.C., Semenova I.P., Zemtsova E.G., Valiev R.Z. Regulation of the surface microrelief of coarse-grained and ultrafine-grained titanium by etching method. Mater. Phys. Mech. 2014;21:259–265.Nazarov D.V., Zemtsova E.G., Valiev R.Z., Smirnov V.M. Formation of micro- and nanostructures on the nanotitanium surface by chemical etching and deposition of titania films by atomic layer deposition (ALD) Materials. 2015;8:8366–8377. doi: 10.3390/ma8125460.10.3390/ma8125460PMC545883928793716Wennerberg A., Albrektsson T., Jimbo R. Implant Surfaces and Their Biological and Clinical Impact. Springer; Heidelberg, Germany: New York, NY, USA: 2015. pp. 1–182.Wennerberg A., Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces. Int. J. Oral Maxillofac. Implant. 2000;15:331–344.10874798Martin H.J., Schulz K.H., Walters K.B. Piranha treated titanium compared to passivated titanium as characterized by XPS. Surf. Sci. Spectra. 2008;15:23–30. doi: 10.1116/11.20070702.10.1116/11.20070702Garbacz H., Pisarek M., Kurzydłowski K.J. Corrosion resistance of nanostructured titanium. Biomol. Eng. 2007;24:559–563. doi: 10.1016/j.bioeng.2007.08.007.10.1016/j.bioeng.2007.08.00717889602Hoseini M., Shahryari A., Omanovic S., Szpunar J.A. Comparative effect of grain size and texture on the corrosion behavior of commercially pure titanium processed by equal channel angular pressing. Corros. Sci. 2009;51:3064–3067. doi: 10.1016/j.corsci.2009.08.017.10.1016/j.corsci.2009.08.017Cotton F.A., Wilkinson G. Advanced Inorganic Chemistry. John Willey & Sons, Inc.; London, UK: New York, NY, USA: 1972. pp. 807–818.Mühlebach J., Müller K., Schwarzenbach G. The peroxo complexes of titanium. Inorg. Chem. 1970;9:2381–2390.Jiang N., Zhu S., Li J., Zhang L., Liao Y., Hu J. Development of a novel biomimetic micro/nanohierarchical interface for enhancement of osseointegration. RSC Adv. 2016;6:49954–49965. doi: 10.1039/C6RA03183H.10.1039/C6RA03183HLi B.E., Li Y., Min Y., Hao J.Z., Liang C.Y., Li H.P., Wang G.C., Liu S.M., Wang H.S. Synergistic effects of hierarchical hybrid micro/nanostructures on the biological properties of titanium orthopaedic implants. RSC Adv. 2015;5:49552–49558. doi: 10.1039/C5RA05821J.10.1039/C5RA05821JJones F.H. Teeth and bones: Applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 2001;42:75–205. doi: 10.1016/S0167-5729(00)00011-X.10.1016/S0167-5729(00)00011-XLord M.S., Foss M., Besenbacher F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today. 2010;5:66–78. doi: 10.1016/j.nantod.2010.01.001.10.1016/j.nantod.2010.01.001Seddiki O., Harnagea C., Levesque L., Mantovani D., Rosei F. Evidence of antibacterial activity on titanium surfaces through nanotextures. Appl. Surf. Sci. 2014;308:275–284. doi: 10.1016/j.apsusc.2014.04.155.10.1016/j.apsusc.2014.04.155Variola F., Zalzal S.F., Leduc A., Barbeau J., Nanci A. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties. Int. J. Nanomed. 2014;9:2319–2325. doi: 10.2147/IJN.S61333.10.2147/IJN.S61333PMC402655724872694Lu X., Wang Y., Yang X., Zhang Q., Zhao Z., Weng L.-T., Leng Y. Spectroscopic analysis of titanium surface functional groups under various surface modification and their behaviors in vitro and in vivo. J. Biomed. Mater. Res. Part A. 2008;84:523–534. doi: 10.1002/jbm.a.31471.10.1002/jbm.a.3147117618503Rautray T.R., Narayanan R., Kim K.-H. Ion implantation of titanium based biomaterials. Prog. Mater. Sci. 2011;56:1137–1177. doi: 10.1016/j.pmatsci.2011.03.002.10.1016/j.pmatsci.2011.03.002Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. 2nd ed. Physical Electronics, Inc.; Eden Prairie, MN, USA: 1995. pp. 1–261.