Risperidone is known to increase prolactin secretion in treating mental illness patients. This side-effect is thought to be mediated via central signaling pathway. However, the exact pathway involved between risperidone and hyperprolactinemia are still unknown. Therefore, we have treated mice with risperidone and investigated the central mechanisms. The present study showed that in risperidone treated group, the level of the serum prolactin significantly increased, which was consistent with increased positive prolactin staining in pituitary gland. Elevated c-fos expression was observed in the arcuate hypothalamic nucleus (Arc) where we found 65% c-fos positive neurons co-localised with neuropeptide Y (NPY) in mice treated with risperidone. In addition, the results from in situ hybridization showed that the NPY mRNA in the Arc was significantly increased, whereas the tyrosine hydroxylase (TH) mRNA dramatically decreased compared with control group in the paraventricular hypothalamic nucleus (PVN). These findings revealed that risperidone may mediate the transcriptional regulation of Arc NPY and TH in the PVN. Furthermore, risperidone induced a decreased dopamine synthesis in the PVN and thus reduced the dopamine-induced inhibition of prolactin release, ultimately lead to hyperprolactinemia. Therefore, insights into these neuronal mechanisms open up potential new ways to treat schizophrenia patients in order to ameliorate hyperprolactinemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2017.03.009 | DOI Listing |
Int J Mol Sci
January 2025
Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan. Electronic address:
3,4-Methylenedioxymethamphetamine (MDMA) is a widely recognized entactogen frequently used recreationally. It is known for its interaction with the serotonin and oxytocin systems, which underlie its entactogenic effects in humans. Recently, we demonstrated that the gut-brain axis, mediated by the subdiaphragmatic vagus nerve, contributes to MDMA-induced resilience enhancement in rodents.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea.
The significant correlation between ancient medicinal practices and brain function marks a revolutionary frontier in the field of neuroscience. Acupuncture, a traditional oriental medicine, can affect brain regions, such as the hypothalamus, anterior cingulate, posterior cingulate, and hippocampus, and produces specific therapeutic effects, such as pain relief, suppression of hypertension, and alleviation of drug addiction. Among the brain regions, the hypothalamus, a small yet critical region in the brain, plays a pivotal role in maintaining homeostasis by regulating a wide array of physiological processes, including stress responses, energy balance, and pain modulation.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, 819-0395, Fukuoka, Japan. Electronic address:
Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
The established dogma about regulation of feeding is based on the interaction amongst hypothalamic orexigenic and anorexigenic neuropeptides. However, the molecular underpinnings of those interactions remain unclear. A recent article published in by first demonstrated that the transition between hunger and satiety depends on the regulation of 3',5'-cyclic adenosine monophosphate (cAMP) in the paraventricular nucleus of the hypothalamus (PVH) providing novel insights on the spatial and temporal basis by which neuropeptides act.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!