Chronic stress-induced dendritic reorganization and abundance of synaptosomal PKA-dependent CP-AMPA receptor in the basolateral amygdala in a mouse model of depression.

Biochem Biophys Res Commun

Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul, Republic of Korea. Electronic address:

Published: May 2017

Chronic stress is a precipitating factor for disorders including depression. The basolateral amygdala (BLA) is a critical substrate that interconnects with stress-modulated neural networks to generate emotion- and mood-related behaviors. The current study shows that 3 h per day of restraint stress for 14 days caused mice to exhibit long-term depressive behaviors, manifested by disrupted sociality and despair levels, which were rescued by fluoxetine. These behavioral changes corresponded with morphological and molecular changes in BLA neurons, including chronic stress-elicited increases in arborization, dendritic length, and spine density of BLA principal neurons. At the molecular level, calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs) within the synaptosome exhibited an increased GluR1:GluR2 subunit ratio. We also observed increased GluR1 phosphorylation at Ser 845 and enhanced cyclic AMP-dependent protein kinase (PKA) activity in the BLA. These molecular changes reverted to the basal state post-treatment with fluoxetine. The expression of synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95) at BLA neuronal synapses was also enhanced by chronic stress, which was reversed post-treatment. Finally, chronic stress-provoked depressive behavior was overcome by local blockage of CP-AMPARs in the BLA via stereotaxic injection (IEM-1460). Chronic stress-elicited depressive behavior may be due to hypertrophy of BLA neuronal dendrites and increased of PKA-dependent CP-AMPAR levels in BLA neurons. Furthermore, fluoxetine can reverse chronic stress-triggered cytoarchitectural and functional changes of BLA neurons. These findings provide insights into depression-linked structural and functional changes in BLA neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.03.093DOI Listing

Publication Analysis

Top Keywords

bla neurons
16
changes bla
12
bla
10
basolateral amygdala
8
chronic stress
8
molecular changes
8
chronic stress-elicited
8
bla neuronal
8
depressive behavior
8
functional changes
8

Similar Publications

Effects of chronic ethanol exposure on dorsal medial striatal neurons receiving convergent inputs from the orbitofrontal cortex and basolateral amygdala.

Neuropharmacology

January 2025

Department of Neuroscience; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

Alcohol use disorder is associated with altered function of cortical-amygdala-striatal circuits such as the orbitofrontal cortex (OFC), basolateral amygdala (BLA) and their connections to the dorsal medial striatum (DMS) shown to be involved in goal-directed actions. Using retrobead tracing, we previously reported enhanced excitability of DMS-projecting OFC neurons in mice following 3-to-7-day withdrawal from chronic intermittent ethanol (CIE) exposure. In the same animals, spiking of DMS-projecting BLA neurons was decreased at 3-days post-withdrawal followed by an increase in firing at 7- and 14-days.

View Article and Find Full Text PDF

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.

View Article and Find Full Text PDF

Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC-BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA).

View Article and Find Full Text PDF

Psychiatric disorders, including anxiety and depression, are highly comorbid in people with epilepsy. However, the mechanisms mediating the shared pathophysiology are currently unknown. There is considerable evidence implicating the basolateral amygdala (BLA) in the network communication of anxiety and fear, a process demonstrated to involve parvalbumin-positive (PV) interneurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!