Alzheimer's disease is a representative age-related neurodegenerative disease that could result in loss of memory and cognitive deficiency. However, the precise onset time of Alzheimer's disease affecting neuronal circuits and the mechanisms underlying the changes are not clearly known. To address the neuroanatomical changes during the early pathologic developing process, we acquired the neuronal morphological characterization of AD in APP/PS1 double-transgenic mice using the Micro-Optical Sectioning Tomography system. We reconstructed the neurons in 3D datasets with a resolution of 0.32 × 0.32 × 1 μm and used the Sholl method to analyze the anatomical characterization of the dendritic branches. The results showed that, similar to the progressive change in amyloid plaques, the number of dendritic branches were significantly decreased in 9-month-old mice. In addition, a distinct reduction of dendritic complexity occurred in third and fourth-order dendritic branches of 9-month-old mice, while no significant changes were identified in these parameters in 6-month-old mice. At the branch-level, the density distribution of dendritic arbors in the radial direction decreased in the range of 40-90 μm from the neuron soma in 6-month-old mice. These changes in the dendritic complexity suggest that these reductions contribute to the progressive cognitive impairment seen in APP/PS1 mice. This work may yield insights into the early changes in dendritic abnormality and its relevance to dysfunctional mechanisms of learning, memory and emotion in Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2017.03.094 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder worldwide, and microglia are thought to play a central role in neuroinflammatory events occurring in AD. Chemerin, an adipokine, has been implicated in inflammatory diseases and central nervous system disorders, yet its precise function on microglial response in AD remains unknown.
Methods: The APP/PS1 mice were treated with different dosages of chemerin-9 (30 and 60 µg/kg), a bioactive nonapeptide derived from chemerin, every other day for 8 weeks consecutively.
Nat Aging
January 2025
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.
View Article and Find Full Text PDFNat Aging
January 2025
Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Traditional approaches to studying astrocyte heterogeneity have mostly focused on analyzing static properties, failing to identify whether subtypes represent intermediate or final states of reactive astrocytes. Here we show that previously proposed neuroprotective and neurotoxic astrocytes are transitional states rather than distinct subtypes, as revealed through time-series multiomic sequencing. Neuroprotective astrocytes are an intermediate state of the transition from a nonreactive to a neurotoxic state in response to neuroinflammation, a process regulated by the mTOR signaling pathway.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
Background: Alzheimer's disease (AD) is a major neurodegenerative disorder with significant environmental factors, including diet and lifestyle, influencing its onset and progression. Although previous studies have suggested that certain diets may reduce the incidence of AD, the underlying mechanisms remain unclear.
Method: In this post-hoc analysis of a randomized crossover study of 20 elderly adults, we investigated the effects of a modified Mediterranean ketogenic diet (MMKD) on the plasma lipidome in the context of AD biomarkers, analyzing 784 lipid species across 47 classes using a targeted lipidomics platform.
Nature
January 2025
Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
Polygenic genome editing in human embryos and germ cells is predicted to become feasible in the next three decades. Several recent books and academic papers have outlined the ethical concerns raised by germline genome editing and the opportunities that it may present. To date, no attempts have been made to predict the consequences of altering specific variants associated with polygenic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!