Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content.

J Biotechnol

Wageningen University and Research, Bioprocess Engineering Group, AlgaePARC, Droevendaalsesteeg 1, 6708 PB, The Netherlands; University of Nordland, Faculty of Biosciences and Aquaculture, N-8049 Bodø, Norway.

Published: April 2017

Botryococcus braunii can produce both long-chain hydrocarbons as well as carbohydrates in large quantities, and is therefore a promising industrial organism for the production of biopolymer building blocks. Many studies describe the use of different strains of Botryococcus braunii but differences in handling and cultivation conditions make the comparison between strains difficult. In this study, 16 B. braunii strains obtained from six culture collections were compared for their biomass productivity and hydrocarbon and carbohydrate content. Biomass productivity was highest for AC768 strain with 1.8gLday, while hydrocarbon production ranged from none to up to 42% per gram biomass dry weight, with Showa showing the highest hydrocarbon content followed by AC761. The total carbohydrate content varied from 20% to 76% per gram of the biomass dry weight, with CCALA777 as the highest producer. Glucose and galactose are the main monosaccharides in most strains and fucose content reached 463mgL in CCALA778.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2017.03.008DOI Listing

Publication Analysis

Top Keywords

botryococcus braunii
12
biomass productivity
12
carbohydrate content
12
braunii strains
8
compared biomass
8
productivity hydrocarbon
8
hydrocarbon carbohydrate
8
gram biomass
8
biomass dry
8
dry weight
8

Similar Publications

The global shift towards sustainable energy and bioproducts has intensified research on algae. Renewable green biofuel can address and provide solutions to both energy crisis and climate change challenges. Botryococcus braunii, a bloom forming green microalga, known for its high lipid content and potential for biofuel production has been explored in the present study.

View Article and Find Full Text PDF

Inhibition mechanism of leukemia cells HL-60 by exopolysaccharides from Botryococcus braunii in response to high-concentration cobalt.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China. Electronic address:

The influence of metal elements on the biomedical activity of microalgal exopolysaccharides (EPS) remains underexplored. This study examined the antitumor properties of Botryococcus braunii EPS under high cobalt conditions and the role of exogenous 3-indole acetic acid (IAA) in enhancing its activity. Results showed that IAA mitigated cobalt-induced inhibition of B.

View Article and Find Full Text PDF

This study investigated the effects of gamma (Cs, 0-250 Gy) and UV (UV-C, 0-12 h) radiation on growth and biodiesel properties of Botryococcus braunii KMITL. For gamma radiation, maximum biomass (1.37 ± 0.

View Article and Find Full Text PDF

Optimized medium conditions maximize colony regeneration from a single cell of Botryococcus braunii NIES836.

Biochem Biophys Res Commun

November 2024

Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan. Electronic address:

Botryococcus braunii is a colonial alga recognized for its slow growth but high hydrocarbon accumulation. Although using genetic engineering to increase the growth rate and hydrocarbon yield of B. braunii is desirable, the presence of an extracellular matrix (ECM) significantly hinders the emergence of a homogeneous colony from a single DNA-transformed cell.

View Article and Find Full Text PDF

The colonial green microalga Botryococcus braunii is well known for producing liquid hydrocarbons that can be utilized as biofuel feedstocks. B. braunii is taxonomically classified as a single species made up of three chemical races, A, B, and L, that are mainly distinguished by the hydrocarbons produced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!