Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368709 | PMC |
http://dx.doi.org/10.3390/genes8030105 | DOI Listing |
Biology (Basel)
August 2024
Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.
In this review, we summarize the processes of the assembly of multi-protein replisomes at the origins of replication. Replication licensing, the loading of inactive minichromosome maintenance double hexamers (dhMCM2-7) during the G1 phase, is followed by origin firing triggered by two serine-threonine kinases, Cdc7 (DDK) and CDK, leading to the assembly and activation of Cdc45/MCM2-7/GINS (CMG) helicases at the entry into the S phase and the formation of replisomes for bidirectional DNA synthesis. Biochemical and structural analyses of the recruitment of initiation or firing factors to the dhMCM2-7 for the formation of an active helicase and those of origin melting and DNA unwinding support the steric exclusion unwinding model of the CMG helicase.
View Article and Find Full Text PDFNat Commun
April 2024
Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany.
Nucleic Acids Res
October 2023
Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK.
Faithful cell division is the basis for the propagation of life and DNA replication must be precisely regulated. DNA replication stress is a prominent endogenous source of genome instability that not only leads to ageing, but also neuropathology and cancer development in humans. Specifically, the issues of how vertebrate cells select and activate origins of replication are of importance as, for example, insufficient origin firing leads to genomic instability and mutations in replication initiation factors lead to the rare human disease Meier-Gorlin syndrome.
View Article and Find Full Text PDFEMBO J
September 2023
School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
CMG (Cdc45-MCM-GINS) helicase assembly at the replication origin is the culmination of eukaryotic DNA replication initiation. This process can be reconstructed in vitro using defined factors in Saccharomyces cerevisiae; however, in vertebrates, origin-dependent CMG formation has not yet been achieved partly due to the lack of a complete set of known initiator proteins. Since a microcephaly gene product, DONSON, was reported to remodel the CMG helicase under replication stress, we analyzed its role in DNA replication using a Xenopus cell-free system.
View Article and Find Full Text PDFCurr Opin Struct Biol
February 2023
School of Biological Sciences, The University of Hong Kong, Hong Kong. Electronic address:
DNA replication initiation in eukaryotes is tightly regulated through two cell-cycle specific processes, replication licensing to install inactive minichromosome maintenance (MCM) double-hexamers (DH) on origins in early G1 phase and origin firing to assemble and activate Cdc45-Mcm2-7-GINS (CMG) helicases upon S phase entry. Two kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), are responsible for driving the association of replication factors with the MCM-DH to form CMG helicases for origin melting and DNA unwinding and eventually replisomes for bi-directional DNA synthesis. In recent years, cryo-electron microscopy studies have generated a collection of structural snapshots for the stepwise assembly and remodeling of the replication initiation machineries, creating a framework for understanding the regulation of this fundamental process at a molecular level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!