Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (DNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of -14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372675PMC
http://dx.doi.org/10.3390/ijms18030663DOI Listing

Publication Analysis

Top Keywords

ps80 pbca
20
neural differentiation
12
stem cells
12
neurotrophic factor
8
mouse induced
8
induced pluripotent
8
pluripotent stem
8
bdnf expression
8
ps80
5
pbca
5

Similar Publications

Article Synopsis
  • * This study explores using chitosan-coated nanoparticles made from polysorbate 80 and polybutylcyanoacrylate as a carrier to improve stability and cell uptake for delivering a plasmid DNA encoding the BDNF gene into mouse induced pluripotent stem cells (iPSCs).
  • * The chitosan-coated nanoparticles demonstrated high DNA loading efficiency and non-toxicity to iPSCs, and successfully enhanced BDNF expression and neural lineage markers, indicating effective in vitro transfection.
View Article and Find Full Text PDF

Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (DNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting.

View Article and Find Full Text PDF

Background Poly(butylcyanoacrylate) (PBCA) nanoparticles (NPs) loaded with doxorubicin (DOX) and coated with polysorbate 80 (PS80) have shown efficacy in the treatment of rat glioblastoma. However, cytotoxicity of this treatment remains unclear. Purpose The purpose of this study was to investigate cytotoxicity and apoptotic gene expression using a proven in vitro co-culture model of the blood-brain barrier.

View Article and Find Full Text PDF

Therapy of diseases of the central nervous system is a major challenge since drugs have to overcome the blood-brain barrier (BBB). A powerful strategy to enhance cerebral drug concentration is administration of drug-loaded poly(n-butylcyano-acrylate) (PBCA) nanoparticles coated with polysorbate 80 (PS80). This study evaluates the toxicity of PBCA-nanoparticles at the BBB, representing the target organ, the inflammatory response in human whole blood, as the site of administration and in a rat model in vivo.

View Article and Find Full Text PDF

In previous studies it was shown that polysorbate 80(PS80)-coated poly(n-butylcyano-acrylate) nanoparticles (PBCA-NP) are able to cross the blood-brain barrier (BBB) in vitro and in vivo. In order to explore and extend the potential applications of PBCA-NP as drug carriers, it is important to ascertain their effect on the BBB. The objective of the present study was to determine the effect of PS80-coated PBCA-NP on the BBB integrity of a porcine in vitro model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!