The inositol phospholipids phosphatidylinositol, phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol 4,5-bisphosphate (PIP2) comprise 14.8, 1.2, and 0.3 mol %, respectively, of Dunaliella salina phospholipids. In isolated plasma membrane fractions, PIP and PIP2 are highly concentrated, together comprising 9.5 mol % of plasmalemma phospholipids. The metabolism of these inositol phospholipids and phosphatidic acid (PA) is very rapid under normal growth conditions. Within 5 min after introduction of 32Pi into the growth medium, over 75% of lipid-bound label was found in these quantitatively minor phospholipids. Within 2 min after a sudden hypoosmotic shock, the levels of PIP2 and PIP dropped to 65 and 79%, respectively, of controls. Within the same time frame, PA rose to 141% of control values. These data suggest that a rapid breakdown of the polyphosphoinositides may mediate the profound morphological and physiological changes which allow this organism to survive drastic hypoosmotic stress. In contrast to hypoosmotic shock, hyperosmotic shock induced a rise in PIP2 levels to 131% of control values, whereas the level of PA dropped to 56% of controls after 4 min. These two different types of osmotic stress affect inositol phospholipid metabolism in a fundamentally opposite manner, with only hypoosmotic shock inducing a net decrease in polyphosphoinositides.
Download full-text PDF |
Source |
---|
Plant Cell Environ
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
Osteoarthritis (OA) is characterized by articular cartilage degeneration, leading to pain and loss of joint function. Recent studies have demonstrated that omega-3 (ω3) polyunsaturated fatty acid (PUFA) supplementation can decrease injury-induced OA progression in mice fed a high-fat diet. Furthermore, PUFAs have been shown to influence the mechanical properties of chondrocyte membranes, suggesting that alterations in mechanosensitive ion channel signaling could contribute to the mechanism by which ω3 PUFAs decreased OA pathogenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Mechanobiology Institute, National University of Singapore, 117411, Singapore.
Diverse tissues in vivo present varying degrees of confinement, constriction, and compression to migrating cells in both homeostasis and disease. The nucleus in particular is subjected to external forces by the physical environment during confined migration. While many systems have been developed to induce nuclear deformation and analyze resultant functional changes, much remains unclear about dynamic volume regulation in confinement due to limitations in time resolution and difficulty imaging in PDMS-based microfluidic chips.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2024
Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia.
To compensate for changes in cell volume caused by changes in salt concentration, mollusks use regulatory mechanisms such as the regulation of volume decrease (RVD). This may increase the rate of aerobic metabolism and lead to an increase in reactive oxygen species (ROS). This study examined the production of ROS in the mitochondria of Anadara kagoshiensis hemocytes, the effect of mitochondrial inhibitors on osmotic stability in hemocytes, and the dynamics of changes in ROS levels and mitochondrial membrane potential when RVD is activated under hypo-osmotic conditions.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry, Australian Centre for Astrobiology, ARC Centre of Excellence in Synthetic Biology, UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!