Leukodystrophies and genetic leukoencephalopathies are a rare group of disorders leading to progressive degeneration of cerebral white matter. They are associated with a spectrum of clinical phenotypes dominated by dementia, psychiatric changes, movement disorders and upper motor neuron signs. Mutations in at least 60 genes can lead to leukoencephalopathy with often overlapping clinical and radiological presentations. For these reasons, patients with genetic leukoencephalopathies often endure a long diagnostic odyssey before receiving a definitive diagnosis or may receive no diagnosis at all. In this study, we used focused and whole exome sequencing to evaluate a cohort of undiagnosed adult patients referred to a specialist leukoencephalopathy service. In total, 100 patients were evaluated using focused exome sequencing of 6100 genes. We detected pathogenic or likely pathogenic variants in 26 cases. The most frequently mutated genes were NOTCH3, EIF2B5, AARS2 and CSF1R. We then carried out whole exome sequencing on the remaining negative cases including four family trios, but could not identify any further potentially disease-causing mutations, confirming the equivalence of focused and whole exome sequencing in the diagnosis of genetic leukoencephalopathies. Here we provide an overview of the clinical and genetic features of these disorders in adults.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405235 | PMC |
http://dx.doi.org/10.1093/brain/awx045 | DOI Listing |
Mol Biol Rep
January 2025
Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK.
Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China.
Hearing loss is one of the conditions characterized by a high degree of genetic heterogeneity, and whole exome sequencing (WES) serves as a key method for identifying pathogenic variants. To date, 155 genes have been reported to be associated with nonsyndromic hearing loss. Recently, a study by Velde et al.
View Article and Find Full Text PDFWorld J Surg Oncol
January 2025
Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
Background: This study aims to identify a pathogenic SDHD mutation associated with hereditary head and neck paraganglioma (HNPGL) in a Chinese family and to explore its implications for genetic counseling.
Methods: The study involved a family with 15 members spanning three generations. A 31-year-old patient (II-4) was diagnosed with a left parotid gland tumor and a right carotid body tumor, while both the father and elder sister had right carotid body tumors, and the third sister had bilateral carotid body tumors.
BMC Pregnancy Childbirth
January 2025
Department of Clinical Genetics, Rennes University Hospital, Rennes, France.
Background: Mucopolysaccharidosis type I (MPS I - IDUA gene) is a rare autosomal recessive lysosomal storage disorder. Clinical symptoms, including visceral overload, are progressive and typically begin postnatally. Descriptions of hepatosplenomegaly associated with lysosomal pathology are uncommon during the prenatal period.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.
Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!