Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report the full assignment of H and C NMR signals belonging to α-glucosyl rhoifolin (Rhf-G), a novel transglycosylated compound synthesized from a flavone glycoside, rhoifolin, as well as its chemical structure. Furthermore, we report the complete NMR signal assignment for another transglycosylated compound, α-glucosyl rutin (Rutin-G), as the signals corresponding to its sugar moieties had not been identified. Electrospray ionization-mass spectrometry along with multiple NMR methods revealed that Rhf-G possesses three sugar moieties in its chemical structure. The additional glucose was bound directly via a transglycosylation to rhoifolin at position 3a of the sugar moiety. Interestingly, intramolecular hydrogen bonds in the basic Rhf-G and Rutin-G skeletons were confirmed by HMBC experiments. These findings will be helpful for comprehensive NMR studies on transglycosylated compounds in food, cosmetic, and pharmaceutical fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2017.03.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!