Age-related decreases in cortical thickness observed during adolescence may be related to fluctuations in sex and stress hormones. We examine this possibility by relating inter-regional variations in age-related cortical thinning (data from the Saguenay Youth Study) to inter-regional variations in expression levels of relevant genes (data from the Allen Human Brain Atlas); we focus on genes coding for glucocorticoid receptor (NR3C1), androgen receptor (AR), progesterone receptor (PGR), and estrogen receptors (ESR1 and ESR2). Across 34 cortical regions (Desikan-Killiany parcellation), age-related cortical thinning varied as a function of mRNA expression levels of NR3C1 in males (R2 = 0.46) and females (R2 = 0.30) and AR in males only (R2 = 0.25). Cortical thinning did not vary as a function of expression levels of PGR, ESR1, or ESR2 in either sex; this might be due to the observed low consistency of expression profiles of these 3 genes across donors. Inter-regional levels of the NR3C1 and AR expression interacted with each other vis-à-vis cortical thinning: age-related cortical thinning varied as a function of NR3C1 mRNA expression in brain regions with low (males: R2 = 0.64; females: R2 = 0.58) but not high (males: R2 = 0.0045; females: R2 = 0.15) levels of AR mRNA expression. These results suggest that glucocorticoid and androgen receptors contribute to cortical maturation during adolescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093352PMC
http://dx.doi.org/10.1093/cercor/bhx040DOI Listing

Publication Analysis

Top Keywords

cortical thinning
24
age-related cortical
16
inter-regional variations
12
expression levels
12
mrna expression
12
cortical
9
expression
8
esr1 esr2
8
thinning varied
8
varied function
8

Similar Publications

Objective: Around 30% of people with schizophrenia are refractory to antipsychotic treatment (treatment-resistant schizophrenia). Abnormal structural neuroimaging findings, in particular volume and thickness reductions, are often described in schizophrenia. Novel biomarkers of active brain pathology such as neurofilament light chain protein are now expected to improve current understanding of psychiatric disorders, including schizophrenia.

View Article and Find Full Text PDF

The cerebral blood flow response to neuroactivation is reduced in cognitively normal men with β-amyloid accumulation.

Alzheimers Res Ther

January 2025

Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Valdemar Hansens Vej 1-23, Glostrup, 2600, Denmark.

Background: Accumulation of β-amyloid (Aβ) in the brain is a hallmark of Alzheimer's Disease (AD). Cerebral deposition of Aβ initiates deteriorating pathways which eventually can lead to AD. However, the exact mechanisms are not known.

View Article and Find Full Text PDF

Background: Memory decline is common in multiple sclerosis (MS), although pathophysiological mechanisms are not fully understood.

Objective: The objective was to investigate the relationship of changes in structural and functional neuroimaging markers to memory decline over 3-year follow-up.

Methods: Participants with MS underwent cognitive evaluation and structural, diffusion, and functional 3T magnetic resonance imaging (MRI) scans at baseline and 3-year follow-up.

View Article and Find Full Text PDF

Possible compensatory role of cerebellum in bipolar disorder. A cortical thickness study.

Eur Arch Psychiatry Clin Neurosci

December 2024

IRCCS Ospedale Policlinico San Martino, Genoa, Italy.

Recent studies suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). Here, we aimed to characterize the structural alterations of cerebellar lobules in BD, evaluating their possible relation with those occurring in the rest of the brain. One-hundred-fifty-five type I BD patients were recruited and compared with one-hundred-nineteen controls subjects.

View Article and Find Full Text PDF

This study aims to review the existing literature on cerebral cortical changes in craniosynostosis during the months of August and September 2023. It focuses on alterations occurring in cases of both syndromic and non-syndromic forms of the disease. In particular, variations in volume, size, and structure (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!