Helicoverpa zea (Boddie), corn earworm, is a damaging insect pest of many crops, including soybeans. An economic threshold for soybeans during the pod-filling stages exists to prevent economic damage to seeds. However, the impact of florivory (flower feeding) by H. zea larvae on seed yield is poorly understood and there is no economic threshold for flowering-stage soybeans. Four small plot experiments were conducted in North Carolina during 2011 and 2012 to assess the impact of H. zea feeding during the flowering stages of determinate soybeans on various yield components. Helicoverpa zea densities were manipulated with insecticides and various planting dates of soybeans and monitored weekly. Helicoverpa zea naturally infested the plots after flowering began and were allowed to feed until R3; they were eliminated from all plots from R3 to maturity. In some sites, H. zea densities exceeded the podding economic threshold during the flowering stages, but yield did not differ among treatments. During 2012, florivory from H. zea was measured directly by counting injured flowers. There was a negative yield relationship between both injured flower number and cumulative flower number. Moreover, H. zea densities were related to both a decrease in cumulative flowers and an increase in injured flowers, even though a direct linkage between H. zea density and yield loss was not observed. Without knowing the preferred tissue types and performance of early-instar larvae on soybeans, it is possible that H. zea density may not be the best measurement for developing an economic threshold in flowering soybeans.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/tow312DOI Listing

Publication Analysis

Top Keywords

helicoverpa zea
16
economic threshold
16
zea densities
12
zea
11
yield loss
8
flowering stages
8
threshold flowering
8
injured flowers
8
flower number
8
zea density
8

Similar Publications

Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.

View Article and Find Full Text PDF

We assessed the utility of a Bayesian analysis of dose-mortality curves using probit analysis. A Bayesian equivalent of a conventional single population probit analysis using Abbott's correction demonstrated the ability of the Bayesian model to recover parameters from generative data. We then developed a model that removed Abbott's correction and estimated natural survivorship as part of the overall model fitting process.

View Article and Find Full Text PDF

Cry2Ab2 is a Bacillus thuringiensis (Bt) protein that has been pyramided with Cry1A.105 in transgenic maize and Cry1Ac in cotton to control some major lepidopteran pests including the corn earworm/bollworm, Helicoverpa zea (Boddie). However, the widespread occurrence of resistance of this pest to the pyramided Cry1A/Cry2A crops in the southern region of the United State has become a threat to the sustainability of the technology.

View Article and Find Full Text PDF
Article Synopsis
  • - The European Commission tasked the EFSA Panel on Plant Health with assessing the risk of pests related to unrooted cuttings produced in Costa Rica, focusing on both regulated and non-regulated pests.
  • - A total of 22 regulated pest species were identified, including various viruses affecting plants, and were analyzed for potential entry risks and the effectiveness of Costa Rica's risk mitigation strategies.
  • - The evaluation concluded that while the risk of pest contamination varied among those studied, there is a high likelihood (95% certainty) that most unrooted cuttings would be free of the tomato spotted wilt virus, estimating that 9,927 to 10,000 out of 10,000 bags would not carry this pest. *
View Article and Find Full Text PDF
Article Synopsis
  • Transgenic crops that produce Cry proteins, derived from the bacterium Bt, are widely used to combat key crop pests like the noctuid moth, but resistance to these proteins, particularly Cry1Ac, has been developing in pest populations.
  • A study investigated the genetic basis of this field-evolved resistance in moth populations from various locations in the southern U.S. and found extensive gene mixing among them.
  • Unlike previous lab findings, the resistance was linked to an increase in a cluster of nine trypsin genes rather than specific mutations in known resistance genes, indicating that there may be multiple genetic factors at play in the development of resistance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!