The genomes are folded in a complex three-dimensional (3D) structure. Some features of this organization are common for all eukaryotes, but little is known about its evolution. Here, we have studied the 3D organization and regulation of zebrafish globin gene domain and compared its organization and regulation with those of other vertebrate species. In birds and mammals, the α- and β-globin genes are segregated into separate clusters located on different chromosomes and organized into chromatin domains of different types, whereas in cold-blooded vertebrates, including Danio rerio, α- and β-globin genes are organized into common clusters. The major globin gene locus of Danio rerio is of particular interest as it is located in a genomic area that is syntenic in vertebrates and is controlled by a conserved enhancer. We have found that the major globin gene locus of Danio rerio is structurally and functionally segregated into two spatially distinct subloci harboring either adult or embryo-larval globin genes. These subloci demonstrate different organization at the level of chromatin domains and different modes of spatial organization, which appears to be due to selective interaction of the upstream enhancer with the sublocus harboring globin genes of the adult type. These data are discussed in terms of evolution of linear and 3D organization of gene clusters in vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msx100DOI Listing

Publication Analysis

Top Keywords

globin gene
16
danio rerio
12
gene clusters
8
organization regulation
8
α- β-globin
8
β-globin genes
8
chromatin domains
8
major globin
8
gene locus
8
locus danio
8

Similar Publications

Haplotype-Resolved Genotyping and Association Analysis of 1,020 β-Thalassemia Patients by Targeted Long-Read Sequencing.

Adv Sci (Weinh)

December 2024

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Despite the well-documented mutation spectra of β-thalassemia, the genetic variants and haplotypes of globin gene clusters modulating its clinical heterogeneity remain incompletely illustrated. Here, a targeted long-read sequencing (T-LRS) is demonstrated to capture 20 genes/loci in 1,020 β-thalassemia patients. This panel permits not only identification of thalassemia mutations at 100% of sensitivity and specificity, but also detection of rare structural variants (SVs) and single nucleotide variants (SNVs) in modifier genes/loci.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.

View Article and Find Full Text PDF

In recent years, chondrocytes have been found to contain hemoglobin, which might be an alternative strategy for adapting to the hypoxic environment, while the potential mechanisms of that is still unclear. Here, we report the expression characteristics and potential associated pathways of hemoglobin in chondrocytes using single-cell RNA sequencing (scRNA-seq). We downloaded data of normal people and patients with osteoarthritis (OA) from the Gene Expression Omnibus (GEO) database and cells are unbiased clustered based on gene expression pattern.

View Article and Find Full Text PDF

Reproductive Health in Women with Major β-Thalassemia: Evaluating Ovarian Reserve and Endocrine Complications.

Metabolites

December 2024

IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.

Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin chains that precipitate within cells, causing hemolysis. This shortens the lifespan of mature red blood cells (RBCs) and results in the premature destruction of RBC precursors in the bone marrow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!