The stability of shapes formed by three viscoelastic droplets during their arrested coalescence has been investigated using micromanipulation experiments. Addition of a third droplet to arrested droplet doublets is shown to be controlled by the balance between interfacial pressures driving coalescence and internal elasticity that resists total consolidation. The free fluid available within the droplets controls the transmission of stress during droplet combination and allows connections to occur via formation of a neck between the droplets. The anisotropy of three-droplet systems adds complexity to the symmetric case of two-droplet aggregates because of the multiplicity of orientations possible for the third droplet. When elasticity dominates, the initial orientation of the third droplet is preserved in the triplet's final shape. When elasticity is dominated by the interfacial driving force, the final shape can deviate strongly from the initial positioning of droplets. Movement of the third droplet to a more compact packing occurs, driven by liquid meniscus expansion that minimizes the surface energy of the triplet. A range of compositions and orientations are examined and the resulting domains of restructuring and stability are mapped based on the final triplet structure. A geometric and a physical model are used to explain the mechanism driving meniscus-induced restructuring and are related to the impact of these phenomena on multiple droplet emulsions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6sm02830fDOI Listing

Publication Analysis

Top Keywords

third droplet
16
arrested coalescence
8
viscoelastic droplets
8
restructuring stability
8
final shape
8
droplet
7
droplets
5
coalescence viscoelastic
4
droplets triplet
4
triplet shape
4

Similar Publications

The application of environmental health assessment strategies to detect Streptococcus pyogenes in Kimberley school classrooms.

Infect Dis Health

December 2024

Wesfarmers Centre of Vaccines and Infectious Diseases, The Kids Research Institute Australia, Nedlands, WA, Australia; Medical School, University of Western Australia, Crawley, WA, Australia; Department of Infectious Diseases, Perth Children's Hospital, Nedlands, WA, Australia.

Background: Children spend almost one-third of their waking hours at school. Streptococcus pyogenes (Strep A) is a common childhood bacterial infection that can progress to causing serious disease. We aimed to detect Strep A in classrooms by using environmental settle plates and swabbing of high-touch surfaces in two remote schools in the Kimberley, Western Australia.

View Article and Find Full Text PDF

Rapid N2O Formation from N2 on Water Droplet Surfaces.

Angew Chem Int Ed Engl

December 2024

University of Pennsylvania, Department of Earth and Environmental Science and Department of Chemistry, 251 Hayden Hall, 240 South 33rd Street, 19104-6316, Philadelphia, UNITED STATES OF AMERICA.

Nitrogen (N2) has long been considered as stable atmospheric reservoir for N element and has a persistence time of hundreds of years. This study reveals that oxygen (O2) at typical tropospheric concentrations can rapidly activate N2, leading to substantial production of nitrous oxide (N2O), the third most impactful greenhouse gas, at rates approaching 2.83 ± 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study compares the effectiveness of ultrasensitive real-time PCR and droplet digital PCR (ddPCR) in detecting specific mutations associated with breast cancer in primary tumors and liquid biopsy samples.
  • The research involved analyzing genetic material from 42 tumor samples and 29 plasma samples from patients with ER+ metastatic breast cancer, as well as samples from healthy donors.
  • Results showed that both methods provided similar detection rates for certain mutations in tumor samples, with ultrasensitive real-time PCR performing better in plasma-cfDNA samples, indicating potential for non-invasive testing in cancer management.
View Article and Find Full Text PDF

Didecyldimethylammonium chloride-induced lung fibrosis may be associated with phospholipidosis.

Toxicol Appl Pharmacol

December 2024

College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Kyung-Hee University Hospital, Kyung Hee University, 02447, Republic of Korea. Electronic address:

In the current study, we dosed Didecyldimethylammonium chloride (DDAC) in mice by pharyngeal aspiration for 28 days or 90 days (weekly) and tried to elucidate the relationship between lamellar body formation and the lesions. When exposed for 28 days (0, 5, 10, 50, and 100 μg/head), all the mice in the 50 and 100 μg/head groups died since Day 2 after the third dosing (Day 16 after the first dosing). Edema, necrosis of bronchiolar and alveolar epithelium, and fibrinous exudate were observed in the lungs of all the dead mice, and chronic inflammatory lesions were observed in the lung tissues of alive mice.

View Article and Find Full Text PDF

The novel H10N3 avian influenza virus acquired airborne transmission among chickens: an increasing threat to public health.

mBio

December 2024

Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.

Following two human infections with the H10N3 avian influenza virus (AIV) in 2021 and 2022, a third case was discovered in Yunnan, China, in 2024, raising concerns about the potential for future pandemics. Recent studies have indicated that novel H10N3 viruses are highly pathogenic in mice and can be transmitted between guinea pigs via respiratory droplets without prior adaptation. However, the biological characteristics of novel H10N3 in poultry have not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!