CXC chemokine receptor 4 plays a critical role in chemotaxis and leukocyte differentiation. Furthermore, there is increasing evidence that links this receptor to angiogenesis. Using the well-established zebrafish-Mycobacterium marinum model for tuberculosis, angiogenesis was recently found to be important for the development of cellular aggregates called granulomas that contain the mycobacteria and are the hallmark of tuberculosis disease. Here, we found that initiation of the granuloma-associated proangiogenic programme requires CXCR4 signalling. The nascent granulomas in cxcr4b-deficient zebrafish embryos were poorly vascularised, which in turn also delayed bacterial growth. Suppressed infection expansion in cxcr4b mutants could not be attributed to an overall deficient recruitment of leukocytes or to different intramacrophage bacterial growth rate, as cxcr4b mutants displayed similar microbicidal capabilities against initial mycobacterial infection and the cellular composition of granulomatous lesions was similar to wildtype siblings. Expression of vegfaa was upregulated to a similar extent in cxcr4b mutants and wildtypes, suggesting that the granuloma vascularisation phenotype of cxcr4b mutants is independent of vascular endothelial growth factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362882 | PMC |
http://dx.doi.org/10.1038/srep45061 | DOI Listing |
Front Cell Dev Biol
October 2023
School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China.
Neural crest cells constitute a distinct set of multipotent cells that undergo migration along predefined pathways, culmination in the differentiation into a plethora of cell types, including components of the pharyngeal cartilage. The neurocranium is composite structure derived from both cranial neural crest and mesoderm cells, whereas the pharyngeal skeletal elements-including the mandibular and branchial arches-are exclusively formed by craniofacial neural crest cells. Previous studies have elucidated the critical involvement of the chemokine signaling axis Cxcl12b/Cxcr4a in craniofacial development in zebrafish ().
View Article and Find Full Text PDFDevelopment
April 2022
Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France.
The vertebrate retinas originate from a specific anlage in the anterior neural plate called the eye field. Its identity is conferred by a set of 'eye transcription factors', whose combinatorial expression has been overlooked. Here, we use the dimorphic teleost Astyanax mexicanus, which develops proper eyes in the wild type and smaller colobomatous eyes in the blind cavefish embryos, to unravel the molecular anatomy of the eye field and its variations within a species.
View Article and Find Full Text PDFPLoS One
January 2022
Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.
Collective cell migration is essential for embryonic development and homeostatic processes. During zebrafish development, the posterior lateral line primordium (pLLP) navigates along the embryo flank by collective cell migration. The chemokine receptors, Cxcr4b and Cxcr7b, as well as their cognate ligand, Cxcl12a, are essential for this process.
View Article and Find Full Text PDFDevelopment
December 2020
Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France.
Sense organs acquire their distinctive shapes concomitantly with the differentiation of sensory cells and neurons necessary for their function. Although our understanding of the mechanisms controlling morphogenesis and neurogenesis in these structures has grown, how these processes are coordinated remains largely unexplored. Neurogenesis in the zebrafish olfactory epithelium requires the bHLH proneural transcription factor Neurogenin 1 (Neurog1).
View Article and Find Full Text PDFStem Cell Reports
August 2019
South Ehime Fisheries Research Center, Ehime University, Ainan 798-4206, Japan; Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
In vertebrates, estrogen receptors are essential for estrogen-associated early gonadal sex development. Our previous studies revealed sexual dimorphic expression of estrogen receptor β2 (ERβ2) during embryogenesis of medaka, and here we investigated the functional importance of ERβ2 in female gonad development and maintenance using a transgenerational ERβ2-knockdown (ERβ2-KD) line and ERβ2-null mutants. We found that ERβ2 reduction favored male-biased gene transcription, suppressed female-responsive gene expression, and affected SDF1a and CXCR4b co-assisted chemotactic primordial germ cell (PGC) migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!