Tetrandrine, a bisbenzylisoquinoline alkaloid constituent of the root of Stephania tetrandra S. Moore, was previously shown to suppress the differentiation of T helper 17 (Th17) cells and consequently ameliorate the collagen-induced arthritis (CIA) in mice by activating the aryl hydrocarbon receptor (AhR), but its underlying mechanism is incompletely understood. Here, we investigated how tetrandrine suppressed Th17 cell differentiation through the AhR pathway. The naïve CD4 T cells were stimulated with anti-CD3/CD28 for 72 hrs in the presence or absence of tetrandrine under the Th17-polarizing condition. Tetrandrine inhibited the phosphorylation of signal transducer and activator of transcription-3 (STAT3) and boosted the phosphorylation of STAT5, while it did not alter the expression levels of phospho-Janus kinase-1 (p-JAK1), p-JAK2, p-JAK3, and suppressor of cytokine signalling-3 (SOCS3). The tetrandrine-mediated inhibition of the Th17 cell differentiation could be diminished by the activator of STAT3 and the inhibitor of STAT5. Meanwhile, the effect of tetrandrine on the either STAT3 or STAT5 phosphorylation was almost completely reversed by the AhR antagonist CH223191 and the AhR knockdown. In CIA mice, tetrandrine decreased p-STAT3 levels and increased p-STAT5 levels, which could also be reversed by the AhR antagonist resveratrol administration. Furthermore, tetrandrine promoted the AhR binding to the STAT5, but not to the STAT3. The tetrandrine-induced inhibition of the STAT3 phosphorylation was diminished by the inhibitor of STAT5. Taken together, tetrandrine suppressed Th17 cell differentiation by reciprocally modulating the activities of STAT3 and STAT5 in an AhR-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571555PMC
http://dx.doi.org/10.1111/jcmm.13141DOI Listing

Publication Analysis

Top Keywords

th17 cell
16
cell differentiation
16
stat3 stat5
12
tetrandrine
9
aryl hydrocarbon
8
hydrocarbon receptor
8
activities stat3
8
cia mice
8
tetrandrine suppressed
8
suppressed th17
8

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease, characterized by impaired wound repair, tissue remodeling and fibrosis. Immune system may participate in the development and progression of the disease as indicated by altered activity in IPF sufferers. This study investigates the immune response to the BNT162b2 COVID-19 vaccine in patients with IPF compared to healthy controls, with a particular focus on evaluation of antibody responses, interferon-gamma release, cytokine profiling and a broad panel of immune cell subpopulations.

View Article and Find Full Text PDF

Background: Huanglian-ejiao decoction (HED) is a Chinese traditional medicinal formula evolved from the Shanghan Lun (Treatise on Febrile Diseases). However, HED ultimate mechanism of action remained indistinct. Therefore, this study aimed to investigate whether HED could exert anti-inflammatory effects on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis (UC) model through the regulation of CD4T subsets and gut microbiota.

View Article and Find Full Text PDF

A Proteomic Study Based on Home Quarantine Model Identifies NQO1 and Inflammation Pathways Involved in Adenoid Hypertrophy.

J Inflamm Res

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Background: Adenoid hypertrophy is a common disorder of childhood, and has an unclear pathogenesis. At the beginning of the COVID-19 pandemic, there was a significant reduction in the incidence of adenoid hypertrophy in children under long-term home quarantine, providing a rare research model to explore the pathogenesis and treatment targets of adenoidal hypertrophy in children.

Methodology: Before and during the home quarantine period, adenoids that underwent surgery were detected using label-free proteomics.

View Article and Find Full Text PDF

Cardiovascular diseases remain a significant reason for illness and death globally. Although certain interleukins have been extensively researched about cardiovascular disease (CVD), new findings have identified unique members of the interleukin family that could potentially play a role in cardiovascular well-being and ailments. This review discusses the current understanding of the role of these recently identified interleukins, such as IL-27, IL-31, IL-32, IL-33, and the IL-28 group (IL-28A, IL-28B, IL-29), in the development of cardiovascular diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!