Background: Ischemia-reperfusion (I/R) injury is a common cause of patient morbidity and mortality in the perioperative period. Patients undergoing long-lasting, abdominal, and urogenital surgeries with risk factors such as advanced age, peripheral artery disease, diabetes mellitus, renovascular disease, and congestive heart failure are candidates for acute kidney injury (AKI) due to impaired renal perfusion and decreased functional renal reserve. Pharmacological agents with multiple functions and anti-oxidative and anti-inflammation properties may be promising preventative strategies for AKI. Recently, dexmedetomidine (dex) has been postulated to have renoprotective effects.

Objectives: We aimed to investigate the protective effects of an intravenous anesthetic remifentanil in renal I/R injury in the rat in comparison with dex.

Materials And Methods: A total of 30 Sprague Dawley adult rats were randomly assigned into five groups: the control group (group C, n=6), the sham group (group Sh, n=6, saline-infused rats without I/R injury), the saline group (group S, n=6, saline-infused rats with I/R injury), the remifentanil-treated group (group REM, n=6), and the dexmedetomidine-treated group (group DEX, n=6). The infusions (saline, remifentanil, and dex) were started after anesthesia induction and right nephrectomy and continued until the end of the surgical procedure. In I/R injury groups, the left renal artery and vein were occluded together by a clamp for 30 minutes and reperfusion lasted for 30 minutes. The rats were sacrificed after reperfusion, and the left kidney tissue was harvested. Blood samples were drawn from all animals to evaluate plasma neutrophil gelatinase-associated lipocalin (NGAL) at the beginning, 15 minutes after ischemia, 15 minutes after reperfusion, and 6 hours after the surgical procedure (T0, T1, T2, and T3, respectively).

Results: The plasma NGAL levels exhibited increase at T1, T2, and T3 compared to the levels at T0 in group S (<0.05). In group REM, there was a significant increase in plasma NGAL levels at T3 in comparison to those at T0, T1, and T2. The plasma NGAL levels at T2 in group S were significantly higher than those at T2 in group DEX (<0.05). The groups S and REM showed significantly higher plasma NGAL levels at T3 compared to those at T0 (<0.05). Upon histological examination, there was no difference among the study groups when left kidneys were evaluated (>0.05).

Conclusion: The NGAL levels and histopathological findings reflected protection by dex against renal I/R injury. However, the same exact results could not be mentioned for remifentanil depending on our study results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5352155PMC
http://dx.doi.org/10.2147/DDDT.S126701DOI Listing

Publication Analysis

Top Keywords

i/r injury
20
group group
20
group n=6
12
group
11
n=6 saline-infused
8
saline-infused rats
8
rats i/r
8
surgical procedure
8
minutes reperfusion
8
injury
7

Similar Publications

Myocardial ischemia/reperfusion (I/R)-induced cell death, such as autophagy and ferroptosis, is a major contributor to cardiac injury. Regulating cell death may be key to mitigating myocardial ischemia/reperfusion injury (MI/RI). Autophagy is a crucial physiological process involving cellular self-digestion and compensation, responsible for degrading excess or malfunctioning long-lived proteins and organelles.

View Article and Find Full Text PDF

Intestinal ischemia-reperfusion (I/R) injury occurs under various surgical or disease conditions, where tissue hypoxia followed by reoxygenation results in the production of oxygen radicals and inflammatory mediators. These substances can target the endothelial barrier, leading to microvascular leakage. In this study, we induced intestinal I/R injury in mice by occluding the superior mesenteric artery, followed by removing the clamp to resume blood circulation.

View Article and Find Full Text PDF

Interleukin-34 (IL-34) was recently reported to be a new biomarker for atherosclerosis diseases, such as coronary artery disease and vascular dementia. IL-34 regulates the expression of proinflammatory cytokines (IL-17A, IL-1 and IL-6), which are classical cytokines involved in myocardial ischemia‒reperfusion (MI/R) injury. However, the exact role of IL-34 in MI/R remains unknown.

View Article and Find Full Text PDF

Awaiting insurance coverage: Medicaid enrollment and post-acute care use after traumatic injury.

J Trauma Acute Care Surg

January 2025

From the Section of Trauma and Acute Care Surgery, Department of Surgery (D.N.H., J.S.H.), University of Chicago, Chicago, Illinois; Perelman School of Medicine (E.C.E., A.T.C., O.I.R., A.U.M., M.K.D., N.D.M., M.J.S., E.J.K.), Division of Trauma, Surgical Critical Care and Emergency Surgery (K.M.C., N.D.M., M.J.S., E.J.K.), University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Surgery (L.M.K.), Stanford University, Stanford, California.

Background: Lack of insurance after traumatic injury is associated with decreased use of postacute care and poor outcomes. Insurance linkage programs enroll eligible patients in Medicaid at the time of an unplanned admission. We hypothesized that Medicaid enrollment would be associated with increased use of postacute care, but also with prolonged hospital length of stay (LOS) while awaiting insurance authorization.

View Article and Find Full Text PDF

Piceatannol upregulates USP14-mediated GPX4 deubiquitination to inhibit neuronal ferroptosis caused by cerebral ischemia-reperfusion in mice.

Food Chem Toxicol

January 2025

Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China. Electronic address:

Ischemic stroke is a very common brain disorder. This study aims to assess the neuroprotective effects of piceatannol (PCT) in preventing neuronal injury resulting from cerebral ischemia and reperfusion (I/R) in mice. Additionally, we investigated the underlying mechanisms through which PCT inhibits neuronal ferroptosis by modulating the USP14/GPX4 signaling axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!