A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity. | LitMetric

Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity.

Plant Physiol

Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany

Published: May 2017

The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/μ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional is required for proper basal immunity to the bacterial pathogen Although knockout plants show greatly reduced accumulation of Pip in leaves distal to inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411157PMC
http://dx.doi.org/10.1104/pp.17.00222DOI Listing

Publication Analysis

Top Keywords

systemic acquired
12
pip
9
pipecolic acid
8
acquired resistance
8
basal immunity
8
immunity bacterial
8
bacterial pathogen
8
accumulation pip
8
23-dp pip
8
biochemical principles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!