Hyperspectral imaging using near infrared spectroscopy to monitor coat thickness uniformity in the manufacture of a transdermal drug delivery system.

Int J Pharm

US Food & Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA. Electronic address:

Published: May 2017

Hyperspectral imaging using near infrared spectroscopy (NIRS) integrates spectroscopy and conventional imaging to obtain both spectral and spatial information of materials. The non-invasive and rapid nature of hyperspectral imaging using NIRS makes it a valuable process analytical technology (PAT) tool for in-process monitoring and control of the manufacturing process for transdermal drug delivery systems (TDS). The focus of this investigation was to develop and validate the use of Near Infra-red (NIR) hyperspectral imaging to monitor coat thickness uniformity, a critical quality attribute (CQA) for TDS. Chemometric analysis was used to process the hyperspectral image and a partial least square (PLS) model was developed to predict the coat thickness of the TDS. The goodness of model fit and prediction were 0.9933 and 0.9933, respectively, indicating an excellent fit to the training data and also good predictability. The % Prediction Error (%PE) for internal and external validation samples was less than 5% confirming the accuracy of the PLS model developed in the present study. The feasibility of the hyperspectral imaging as a real-time process analytical tool for continuous processing was also investigated. When the PLS model was applied to detect deliberate variation in coating thickness, it was able to predict both the small and large variations as well as identify coating defects such as non-uniform regions and presence of air bubbles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.03.022DOI Listing

Publication Analysis

Top Keywords

hyperspectral imaging
20
coat thickness
12
pls model
12
imaging infrared
8
infrared spectroscopy
8
monitor coat
8
thickness uniformity
8
transdermal drug
8
drug delivery
8
process analytical
8

Similar Publications

Hyperspectral imaging for detection of macronutrients retained in glutinous rice under different drying conditions.

Curr Res Food Sci

December 2024

Empa Swiss Federal Laboratories for Material Science and Technology, ETH Zurich, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.

This study detected the macronutrients retained in glutinous rice (GR) under different drying conditions by innovatively applying visible-near infrared hyperspectral imaging coupled with different spectra preprocessing and effective wavelength selection techniques (EWs). Subsequently, predictive models were developed based on processed spectra for the detection of the macronutrients, which include protein content (PC), moisture content (MC), fat content (FC), and ash content (AC). The result shows the raw spectra-based model had a prediction accuracy ( ) of 0.

View Article and Find Full Text PDF

This study aims to establish a rapid and non-destructive method for recognizing the origins and cultivation patterns of Astragali Radix. A hyperspectral imaging system(spectral ranges: 400-1 000 nm, 900-1 700 nm; detection time: 15 s) was used to examine the samples of Astragali Radix with different origins and cultivation patterns. The collected hyperspectral datasets were highly correlated and numerous, which required the establishment of stable and reliable dimension reduction and classification models.

View Article and Find Full Text PDF

[Rapid non-destructive detection technology for traditional Chinese medicine preparations based on machine learning: a review].

Zhongguo Zhong Yao Za Zhi

December 2024

Key Laboratory of Modern Preparation of TCM,Ministry of Education, Jiangxi University of Chinese Medicine Nanchang 330004, China National Key Laboratory of Creation of Modern Chinese Medicine with Classical Formulas Nanchang 330004, China.

In recent years, with the increasing societal focus on drug quality and safety, quality issues have become a major challenge faced by the pharmaceutical industry, directly impacting consumer health and market trust. By combining multispectral imaging technology with machine learning, it is possible to achieve rapid, non-destructive, and precise detection of traditional Chinese medicine(TCM) preparations, thereby revolutionizing traditional detection methods and developing more convenient and automated solutions. This paper provides a comprehensive review of the current applications of rapid, non-destructive detection techniques based on machine learning algorithms in the field of TCM preparations.

View Article and Find Full Text PDF

The approaches used to determine the medicinal properties of the plants are often destructive, labor-intensive, time-consuming, and expensive, making it impossible to analyze their quality analysis online. Performance of hyperspectral imaging (HSI) integrated with intelligent techniques to overcome these problems was investigated in this research. For this purpose, three classification methods-support vector machine, random forest (RF), and extreme gradient boosting-were studied for the classification of plants in three classes of medicinal, edible, and ornamental for the organs of leaf, stem, flower, and root.

View Article and Find Full Text PDF

Modified Atmosphere Packaging (MAP) is a conventional method used to prolong the shelf-life of fresh-cut vegetables, including lettuce. However, MAP-stored lettuce remains perishable, and its deterioration mechanism is not fully understood. Here, we utilized non-targeted LC-MS metabolomics to evaluate the effects of cutting and extended storage time on metabolite profiles of lettuce stored in MAP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!