Production of a toxic metabolite in 2,4-D-resistant GM crop plants.

3 Biotech

School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.

Published: June 2016

This Note questions the safety of crop plants engineered with transgenes coding for the degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) into its cytotoxic metabolite 2,4-dichlorophenol (2,4-DCP).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764611PMC
http://dx.doi.org/10.1007/s13205-016-0387-9DOI Listing

Publication Analysis

Top Keywords

crop plants
8
production toxic
4
toxic metabolite
4
metabolite 24-d-resistant
4
24-d-resistant crop
4
plants note
4
note questions
4
questions safety
4
safety crop
4
plants engineered
4

Similar Publications

Root parasitic broomrape ( and spp.) weeds cause devastating damage to agricultural production all around the world. The seeds of broomrapes germinate when they are exposed to germination stimulants, mainly strigolactones (SLs), released from the roots of any plant species; however, broomrapes parasitize only dicot plants.

View Article and Find Full Text PDF

Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity.

View Article and Find Full Text PDF

Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency.

Front Plant Sci

January 2025

National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.

Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!