Assessment of genetic purity in rice (Oryza sativa L.) hybrids using microsatellite markers.

3 Biotech

Directorate of Seed Research, Indian Council of Agricultural Research, Mau, 275101, Uttar Pradesh, India.

Published: June 2016

The objective of the present study is to detect genetic impurity in the seed lots of CMS lines, restorers and hybrids and to identify signature markers to differentiate parents and hybrids through DNA-based assays. Furthermore, attempts have been made to find out an alternative to Grow-Out-Test, which is very tedious, time consuming and used conventionally for seed genetic purity testing since beginning of quality seed multiplication chain. Fifty-one rice-specific sequence tagged microsatellite (STMS) primer pairs distributed throughout the rice genome were employed for fingerprinting of eight rice hybrids and their parental lines with a view to assess variation within parental lines and to test the genetic purity of the commercial seed lots. Among those, 51 markers, 28 microsatellite markers showed polymorphism (54.90 %). A total of 98 alleles were obtained with an average of 1.92 alleles per primer pair and number of alleles amplified for each primer pair ranged from 1 to 4. A set of markers were identified to differentiate parental lines of the hybrids and which emphasizes the immense scope of those molecular markers for their use in the unambiguous identification of hybrid, which would be of great benefit to farmers that depend on the hybrids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746197PMC
http://dx.doi.org/10.1007/s13205-015-0337-yDOI Listing

Publication Analysis

Top Keywords

genetic purity
12
parental lines
12
microsatellite markers
8
seed lots
8
primer pair
8
hybrids
6
markers
6
assessment genetic
4
purity rice
4
rice oryza
4

Similar Publications

Background: Prolonged exposure to LED-light has been associated with impaired sleep quality and pathogenesis of various diseases, including Alzheimer's Disease (AD). Red light therapy has been indicated as a non-invasive way of reducing anxiety, mood and sleep optimization in neurodegenerative disorders but its endogenous mechanisms are insufficiently comprehended. Hence, we assessed the effects of scheduled red-light exposure on clock genes-Bmal1 and Per 1 expression, feacal boli frequency, and anxiety-like responses in prolonged LED-light exposed rats.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Tauopathies are a group of neurodegenerative disorders which are characterized by the accumulation of abnormal tau protein in the brain. However, the mechanistic understanding of pathogenic tau formation and spread within the brain remains elusive. Astrocytes are major immune reactive cells in the brain and have been implicated in exacerbating tau pathology by releasing extracellular vesicles (AEVs) containing pro-inflammatory cytokines and chemokines upon activation.

View Article and Find Full Text PDF

Background: Mitochondria plays a crucial role at synapses in providing synaptic energy, healthy synaptic function, and cognitive functions. Amyloid-beta and phosphorylated tau protein oligomers cause severe mitochondrial defects in Alzheimer's disease (AD), which leads to the lack of synaptic energy and impaired synapse functions in AD. MicroRNAs (miRNAs) present within the mitochondria are involved in multiple mitochondrial activities and mitochondrial function.

View Article and Find Full Text PDF

Background: Large-scale unbiased proteomic profiling studies have identified a cluster of 31 proteins co-expressed with APP, which is termed the matrisome module 42 (M42). M42 is enriched in AD risk genes, including APOE, with mostly secreted proteins that bind heparin, collectively strongly correlate with the burden of brain pathology and cognitive trajectory, and localize to amyloid plaques in AD brain. For these reasons, M42 has been nominated as a novel therapeutic target for enabling drug discovery by our TREAT-AD Center.

View Article and Find Full Text PDF

Current assays fail to address breast cancer's complex biology and accurately predict treatment response. On a retrospective cohort of 1082 female breast tissues, we develop and validate mFISHseq, which integrates multiplexed RNA fluorescent in situ hybridization with RNA-sequencing, guided by laser capture microdissection. This technique ensures tumor purity, unbiased whole transcriptome profiling, and explicitly quantifies intratumoral heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!